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Abstract. In this paper we present a distributed control architecture for a simu-
lated hexapod robot with twelve degrees of freedom consisting of six homoge-
neous neural modules controlling the six corresponding legs that only have ac-
cess to local sensory information and that coordinate by exchanging signals that 
diffuse in space like gaseous neuro-trasmitters. The free parameters of the neu-
ral modules are evolved and are selected on the basis of the distance travelled 
by the robot. Obtained results indicate how the six neural controllers are able to 
coordinate so to produce an effective walking behaviour and to adapt on the fly 
by selecting the gait that is most appropriate to the current robot/environmental 
circumstances. The analysis of the evolved neural controllers indicates that the 
six neural controllers synchronize and converge on an appropriate gait on the 
basis of extremely simple control mechanisms and that the effects of the physi-
cal interaction with the environment are exploited to coordinate and to converge 
on a tripod or tetrapod gait on the basis of the current circumstances. 

1 Introduction 

In this paper we describe a method for developing the control system for a simulated 
hexapod robot with twelve degrees of freedom that has to exhibit a walking behav-
iour. The architecture proposed is fully distributed and consists of six identical neural 
modules in which each module is located in the corresponding leg and in which neu-
ral modules coordinate by producing and detecting signals that diffuse in space like 
gaseous neuro-trasmitters.  

This implies that as in other related models [1],[2] leg coordination does not arise 
from a centralized gait generator, but rather from the interactions between the neural 
modules controlling the corresponding legs. More precisely, leg coordination is medi-
ated by the physical robot/environment interaction and by the signals produced by 
neural modules located nearby. However, contrary to the other models referenced 
above, each neural module influences and is influenced by the neural modules located 
nearby in the same way (i.e. the control system is constituted by a set of identical neu-
ral modules). 

In more general terms, we assume that the control system of our robot is composed 
by a number of homogeneous neural modules that, each separately, exhibit a limit cy-
cle (i.e. a periodic behaviour). Our problem, therefore, is that to define the rules that 
determine the conditions in which signals are produced and the way in which detected 



signals affect nearby neural modules so that the resulting closed loop system exhibits 
a coordinated limit cycle behaviour that allow the robot to walk effectively (for a re-
lated approach see [3]). This problem have been attacked by using a self-organized 
technique based on artificial evolution [4] in which the free parameters of the neural 
modules are encoded in a population of evolving genotypes, and variations introduced 
through genetic operators are retained or discarded on the basis of the overall behav-
iour exhibited by the neural modules embodied in the robot and tested in the envi-
ronment. 

The goal of this paper is not to understand the biological basis of locomotion con-
trol in natural organisms but rather to build real-time walking machines. In particular, 
we are interested in investigating whether robots that have a modular structure (i.e. 
that are constituted by repeated homologous body elements) can exhibit coherent and 
effective behaviour on the basis of modular control systems (i.e. on the basis of dis-
tributed control system in which repeated parts of the robots body are controlled by 
corresponding repeated control units). Progresses toward this objective, in fact,  might 
have a significant impact on robotics with particular reference to self-reconfigurable 
robotics [5], [6] and evolutionary robotics techniques that allow to co-evolve and co-
adapt the robots’ control system and body structure [7], [8], [9], [10]. 

2 The experimental setup 

In this section we describe the simulated hexapod robot used in the experiments, its 
control system, and the evolutionary algorithm used to set the free parameters of the 
robot’s control system. The characteristics of the simulated robot are identical to that 
described in a previous work [11]. In this paper, however, we present an extended 
version of the control system and new experimental results that show, in particular, 
how evolved robots are able to adapt their gait on the fly on the basis of the current 
circumstances. 

2.1 The hexapod robot 

 
Fig. 1. The simulated hexapod robot. The grey circles shown on the bottom-right side of the 
picture indicate the position of the joints, while the grey arrows indicate their rotational axis. 

The simulated robot (Fig. 1) consists of a main body (with a length of 20 cm, a width 
of 4 cm, and a height of 1.5 cm) and 6 legs. 



Each leg consists of two segments (a “femur” and a “tibia” with a length of 1.5 and 
4.5 cm respectively) and has two motors controlling two corresponding joints (the 
body-femur and the femur-tibia joints). The femur and the body-femur joint allow the 
robot to raise its central body from the ground and to move the tibia up and down. 
The body-femur joint is a motorized hinge joint with rotational axis parallel to the x-
axis that can rotate from - π/16 to + π/16 rad. The femur-tibia joint allows it to move 
the tibia forward or backward. It is a motorized hinge joint that rotates from - π/8 to + 
π/8 rad with respect to its own axis (i.e. an axis  rotated of π/4 rad with respect to yz-
plane). The motors controlling the joints can apply a maximum torque of 0.03Nm at 
maximum speed of 3100 rpm in both directions. For each leg, two simulated position 
sensors detect the current angular position of the corresponding joint. The total weight 
of the simulated robot is 387g. Gravity force is –9.8 m/sec2. The environment consists 
of a flat surface. The robot and the robot/environment interaction were simulated by 
using the VortexTM toolkit (Critical Mass Labs, Canada), that allows to realistically 
simulate the dynamics and collisions of rigid bodies in 3D. 

2.2 The control system 

The robot is controlled by a distributed control system consisting of six homogeneous 
neural modules, located at the junction between the main body and the legs, that con-
trol the six corresponding legs (Fig. 2).  

 
Fig. 2. The robot and its control system consisting of 6 neural modules. L1, L2, and L3 indicate 
the front, middle and rear leg located on the left side of the robot. R1, R2, and R3 indicate the 
front, middle and rear leg located on the right side of the robot. The grey circle represent a pos-
sible range of diffusion of the signal produced by one neural module (i.e. the neural module 
controlling the L3 leg) 

The six neural modules are identical (i.e. have the same architecture and the same free 
parameters) and have access to local sensory information only. More specifically, 
each neural module has access to the current angular position and controls the fre-
quency of oscillation of the two joints of the corresponding leg. Neural modules 
communicate between themselves by producing signals and by detecting the signals 
produced by other neural controllers located within a given Euclidean distance. Sig-
nals thus are similar to gaseous neuro-transmitters such as nitric oxide that are re-
leased by neurons and affect other neurons located nearby in a diffuse manner (see 
[12], [13], [14]). Signal transmission is instantaneous. 



Each of the twelve motors neurons produces a sinusoidal oscillatory movement 
with a variable frequency of the corresponding joint, within the joint’s limits. More 
specifically, the current desired position of a corresponding joint is computed accord-
ing to the following equation:  

pos(t) = sin (V(t) ⋅ t + ϕ) (1) 

where pos(t) indicates the desired angular position of the joint at time t, V(t) (that 
ranges between 7 and 14 Hz) indicates the current frequency of the oscillator, and ϕ 
indicates the starting position of the joint. The output of the neurons is normalized 
within the range of movement of the corresponding joint and is used to encode the de-
sired position of the corresponding joint. More precisely, motors are activated so as to 
reach a speed proportional to the difference between the current and the desired posi-
tion of the joint (maximum motor speed is 3100 rpm, maximum torque is 0.03Nm). 
We decided to use an high frequency range ([7, 14] Hz) and to update the state of the 
sensors and motors at an high rate (every 1.5 ms) to avoid instabilities arising from 
the calculation of the dynamic of the robot/environmental interaction and to reduce 
the time required to test individuals’ behaviour in simulation.   

Each neural module has six input neurons directly connected to six output neurons 
(Fig. 3). 

 
Fig. 3. The topology of each neural module. The six input neurons indicated in the bottom part 
of the picture encode the current angular position of the two joints of a leg and signal A, B, C 
and D (see text). The six output neurons are indicated in the top part of the picture. The first 
two modulate the frequency of oscillation of the two corresponding motorized joints and the 
others four determine whether or not the signal A, B, C and D are produced.  

The input neurons encode the current angular positions of the two joints of the corre-
sponding leg (normalized in the range [0.0, 1.0]) and whether signals, produced by 
other neural modules, are detected. Each neural module can produce four different 
signals (A, B, C and D) that diffuse and can be detected up to a certain distance (Da, 
Db, Dc and Dd,, in the case of signal A, B, C and D, respectively). The intensity of the 
detected signal is linearly dependent from the distance of emitting neural module, and 
vary within 0 (when distance from emitting neuron is D) and 1.0 (when distance from 
emitting neuron is 0). Furthermore, detected signal is linearly proportional to the 
number of neural modules that are currently producing the corresponding signal lo-
cated within the corresponding maximum diffusion distance.  

The activation of output neurons is computed by using a standard logistic function. 
The first two output neurons determine how the frequency of oscillation of the two 



corresponding joints varies. More specifically, each time step (i.e. each 1.5ms), the 
frequency of oscillation of a joint can vary by an amount whose range is [-1.4Hz, 
+1.4Hz] according to the following equation: 
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Where Val indicates the initial value of frequency of a joint that is randomly set 
within the range, Out indicates the output of the corresponding motor neuron, and 
V(t) indicates the current frequency, V(t-1) indicates the frequency at the previous 
time step. Frequency is bounded in the range [7Hz, 14Hz], i.e. variations that exceed 
the limits are discarded. This means that each leg oscillates at a given frequency 
(within a range) and that each neural module can accelerate or decelerate the fre-
quency of oscillation of the corresponding leg by a fixed amount each time step. The 
other four output neurons determine whether or not signal A, B, C and D are pro-
duced. More specifically, signal A, B, C and D are produced when the output of the 
corresponding output neuron exceeds the corresponding threshold (T

a
, T

b
, T

c
 and T

d
 in 

the case of signal A, B, C and D, respectively). 

2.3 The evolutionary algorithm 

The free parameters of the neural modules are evolved through an evolutionary algo-
rithm. Robots were selected for the ability to walk along a straight direction as far as 
possible. Each robot was allowed to "live" for 5 trials, each lasting 3000 ms (i.e. 2000 
time steps of 1.5 ms). The state of the sensor and motor neurons, the torque applied to 
the motors, and the dynamics of robot/environment interaction are updated each time 
step (i.e. each 1.5 ms). At the beginning of each trial: the main body of the robot is 
placed at a height of 3.68 cm with respect to the ground plane (i.e the whole robot 
floats in the air at 0.5 cm from the ground). The initial position of the twelve joints 
and the initial desired velocity of each corresponding motor is set randomly within the 
corresponding range. The fitness of each robot is computed by measuring the Euclid-
ean distance between the initial and final position of the centre of mass of the robot 
during each trial. The total fitness is computed by averaging the distance travelled 
during each trial. 

The initial population consisted of 100 randomly generated genotypes that encoded 
the connection weights and the biases of a neural module, the maximum distance of 
diffusion of the four signals (D
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 and D

d
), and the thresholds that determine 

when signals are produced (T
a
, T

b
, T

c
 and T

d
). Each parameter is encoded as real 

number. Connection weights and biases, diffusion distances of signals, and thresholds 
that determine signal emission are normalized within the following ranges: [-15.0, 
+15.0], [0.0, 10.0], [0, 1.0], respectively. Each genotype is translated into 6 identical 



neural modules that are embodied in the robot and evaluated as described above. The 
20 best genotypes of each generation were allowed to reproduce by generating five 
copies each, with 3% of their genotype value replaced with a new randomly selected 
value (within the corresponding range). The evolutionary process lasted 300 genera-
tions (i.e. the process of testing, selecting and reproducing robots is iterated 300 
times). The experiment was replicated 10 times starting from different, randomly gen-
erated, genotypes.  

3. Obtained results 

By analysing the results of the evolutionary experiments we observed that evolved 
robots display an ability to walk effectively, in all replications of the experiment. In 
particular, evolved robots display an ability to quickly coordinate the phases and the 
frequency of oscillation of their twelve motorized joints by converging toward a tri-
pod gait independently from the initial position of the joints (see Fig. 4).  

 

 
Fig. 4. Average distance travelled by the best robot of each replication in a normal and in a test 
condition (grey and black histograms respectively) in which the robot is loaded with an addi-
tional weight corresponding to 1.5 times the robot’s body weight. Average results for 100 trials 
each lasting 3sec. The robots of all replications display a tripod gait when tested in a normal 
condition. In the test condition, the robots of replication S1, S5, S6, S7, and S10 display a 
tetrapod gait. The robots of the other replications, instead, by not being able to select an appro-
priate gait when loaded with additional weight, display lower performance in this condition.  

Surprisingly, we observed that evolved robots generalize their ability to walk in situa-
tion in which they have to carry a weight equal to 1.5 of robots’ body weight (see Fig. 
4). Interestingly, in some of the replications, evolved robots converge on a tripod gait 
(when they are not loaded with additional weight) and on tetrapod gait (when they are 
loaded with the additional weight, see Fig. 5).  

 



 

 
Fig. 5. A typical behaviour exhibited by an evolved robot of one of the best replications during 
two trials in which the robot is tested in a normal condition or in a test condition in which it is 
loaded with an additional weight (top and bottom figures, respectively).  At the beginning of 
the trial the position of the joints and frequency of oscillation are randomly initialised within 
limits. The black lines indicate the phases in which the tibia of the corresponding leg touch the 
ground. Legs are labelled with L for left and R for right and numbered from 1 to 3 starting from 
the front of the insect. The horizontal axis indicates time in milliseconds. Gaits remain stable 
after 2400 ms (results not shown for space reasons). Please notice that these pictures do not in-
dicate the trajectories of the robot in space but only the phase in time during which the legs 
touch the ground. 

This implies that evolved robots, as real insects, select a tripod gait in normal condi-
tions and a tetrapod gait when they are loaded with additional weight. 

The ability to converge on a tripod or a tetrapod gait in the two circumstances play 
a functional role since the tripod gait is faster when the weight of the robot is not too 
high but is ineffective when the robot is loaded with additional weight. Indeed, as 
shown in Fig.4, the robots that are not able to switch to a tetrapod gait when they are 
loaded with additional weight display significantly worse performance. This can be 
explained by considering that in the tripod and in the tetrapod gait robots are sup-
ported by at least three or four legs, respectively. In the tetrapod gait therefore, the ro-
bot can exploit the power produced by four legs rather than three legs at the same 
time. In the tripod gait, in fact, the front and rear leg of one side and the middle leg of 
the other side perform they swing movement at the same time and the three other legs 
are in anti-phase. In the tetrapod gait, instead, a “wave” of swing movements passes 
along the body from rear to front.  

 
 



 

 

Fig. 6. Desired angular position of the twelve joints during the same trials shown in Figure 5 
(top: data for the test in a normal condition, bottom: data for the test with additional weight). 
Each line indicates the desired angular position of the joints of the leg indicated with a dark line 
in the right part of the Figure. Full lines and dotted lines indicate the position of the body-femur 
and femur-tibia joints, respectively. High values indicate positions in which the femur is ele-
vated with respect to the main body and positions in which the tibia is oriented toward the front 
of the robot.  

The dynamical behaviour produced by the walking robots does not only result from 
the interaction between the six neural modules that control the six corresponding legs 
but also from the dynamics originating from the interaction between the robot body 
and the environment. Indeed, the way in which the actual position of the joints varies 
in time (Fig. 7) is influenced not only from the variation of the desired joint position 
(Fig. 6) but also from the forces arising from the collision between the legs and the 
ground. These forces are influenced by several factors such us the actual orientation 
of the robot with respect to the ground, the total weight of the robot, the current veloc-
ity of the robot, the characteristics of the ground, etc.  
 
 



 

 
Fig. 7. Actual angular position of the twelve joints during the same trials shown in Fig. 5 and 6 
(top: data for the test in a normal condition, bottom: data for the test with additional weight). 
Each line indicates the actual position of the joints of the leg indicated with a dark line in the 
right part of the Figure. Full lines and dotted lines indicate the position of the body-femur and 
femur-tibia joints, respectively. High values indicate positions in which the femur is elevated 
with respect to the main body and positions in which the tibia is oriented toward the front of the 
robot. 

 
The results described above refer to robots that have been evolved in a normal 

condition (in which they were never loaded with additional weight) and have been 
tested in a normal and over-weight condition (in which in half of the trials they were 
loaded with additional weight and in half of the trials they were not). By evolving and 
testing the robots in a normal and over-weighted condition we observed that evolved 
robots displayed lower performance on the average (with a loss of about 20% with re-
spect to the results shown above). Moreover, in this new experiment evolved robots 
always displayed tetrapod gaits and were not able to adapt their gait on the fly so to 
select a tripod gait when tested in normal conditions. This results can be explained by 
considering that in the latter experiment evolving robot converge on a local minima, 
i.e. a simple solution that allow them to reach good but sub-optimal performance on 
the basis of simple control mechanisms. This hypothesis is also supported by the 
analysis reported in the next sections that suggest how tetrapod gait tend to easily 
emerge as a result of the effects of the collisions with the ground without necessarily 
requiring control mechanisms that allow the legs to effectively coordinate and syn-
chronize through signals.   



In another replication of the experiment we verified that the role of space in modu-
lating the effect of signals was really necessary to achieve effective results. More pre-
cisely, by running a replication of the experiment in which the signals produced by 
each module affected all other modules in the same way (independently from the dis-
tance between modules) we observed that evolved robots displayed significantly 
lower performance and were never able to converge on stable gaits.  

4. Analysis of the mechanisms that lead to leg coordination and gait 
selection 

To understand the mechanisms that lead to the synchronization of the twelve joints, 
we analysed the behaviour of each neural module and the interaction between differ-
ent neural modules mediated by signals (i.e. the conditions in which signals are pro-
duced and the effects of signals detected). Here we report the analysis conducted in 
the case of the evolved individuals already described in Figure 5-7. The analysis con-
ducted on individuals of other replications showed qualitatively similar, although in 
some case slightly more complex, strategies. We will first described how the six legs 
converge toward a tripod gait in the normal condition and then how they converge on 
a tetrapod gait when the robot is loaded with additional weight. 

As could be expected, the synchronization between the two joints of each leg is 
achieved within each single neural controller. More specifically: (a) the body-femur 
joint decelerates when it is elevated and the tibia is oriented toward the rear, and (b) 
the femur-tibia joint decelerates when the body-femur joint is lowered and the tibia is 
oriented toward the rear of the robot. Deceleration results both as the effect of output 
of the corresponding neural module and as a result of the effect of collisions. The 
combination of these two mechanisms leads to a stable state, that correspond to stable 
phase observed after coordination, in which the protraction movement of the tibia is 
performed when the body-femur joint is elevated the retraction movement is per-
formed when the body-femur joint is lowered.   

4.1 Analysis of the mechanisms that lead to a tripod gait 

Although neural modules can produce and detect up to four different signals, the 
evolved individual shown in Fig. 5-7 only produces one of the four signals: signal B. 
In the other replications of the experiment, evolved robots use 1 or 2 signals. Interest-
ing however, significantly lower performance have been observed in other experi-
ments in which neural modules were allowed to produce and detect only two signals 
(result not shown). This suggest that the possibility of using many signals plays a cru-
cial role during the first evolutionary phases despite only 1-2 signals are exploited by 
evolved individuals.  

Since the maximum distance of diffusion of signals is 7.81 cm, in the case of the 
robot shown in Fig. 5-7, the signal produced by each leg affects the contra-lateral leg 
of the same segment, the previous and succeeding legs of the same segment, and the 
previous and succeeding legs of the contra-lateral segment (when present). Since the 



amount of the signal detected is proportional to the distance (4.0cm, 6.6cm, and 
7.71cm respectively) the impact of produced signal is larger on the contra-lateral leg 
of the same segment, smaller but still significant on the previous and succeeding legs 
of the same segment, and almost negligible on the previous and succeeding legs of the 
contra-lateral segment. If we ignore the negligible effect on previous and succeeding 
legs of the contra-lateral segment, this means that the signal produced by a leg of one 
group ([L1,L3,R2] or [R1,R3,L2]) affects only the legs of the other group that should 
be in anti-phase in a tripod gait. The legs that are affected by a signal are 2 out of 3 
legs in the case of legs [L1,L3,R1,R3] and 3 out of 3 legs in the case of legs [L2,R2]. 

To explain how the six legs coordinate we should explain why uncoordinated states 
are unstable and lead to coordinated phases (through relative acceleration/deceleration 
of the joints) and why coordinated states are stable. 

The latter aspect can be explained by considering that, during coordinated phases, 
legs belonging to the two groups (A and B) are in phase within the group and in anti-
phase between groups. Legs of group A produces a signal when their tibia are ori-
ented toward the rear and their femurs are elevated (i.e. at the starting of the protrac-
tion phase) and they reduce their velocity only when their tibia are oriented toward 
the rear and they detect a signal produced by legs of group B. Since the legs of the 
two groups are in anti-phase and the signals are produced in an alternate way by the 
legs of the two groups, in coordinated phases signals do not produce accelera-
tion/deceleration effects. 

To explain the former aspect (i.e. why uncoordinated phases are instable) let us 
consider the case in which the legs of groups A and B, during a retraction phase, have 
both their tibia oriented toward the rear but the legs of group A are slightly advanced 
with respect to the legs of group B. Since the interval in which legs emit the signal is 
larger than the interval in which the legs decelerate when they detect a signal, the de-
celeration effect of the legs of the group A on the legs of the group B is longer than 
viceversa. This implies that phase distance between the legs of the two groups tend to 
increase when they are in phase or almost in phase until the legs of the two groups 
reach the stable state described in the previous paragraph. 

4.2 Analysis of the mechanisms that lead to a tetrapod gait 

To understand the mechanisms that allow robots to switch from a tripod to a tetrapod 
gait when loaded with additional weight we should consider that the additional weight 
increases the intensity of friction in particular on the femur joints that are no longer 
able to reach their extreme posterior position (Fig. 7, bottom). Since legs emit the sig-
nal when the femur is elevated, this implies that the overall speed of the legs tend to 
decrease due to the fact that signals are produced for a longer time period.  

Another factor to be considered is that when the body of the robot is not perfectly 
aligned with respect to the ground plane, different legs are subjected to stronger of 
weaker friction forces. For example, when the body of the robot is inclined toward the 
front, with respect to the rostro-caudal axis, the frontal legs are subjected to a stronger 
friction and, as a consequence, these legs produce signals for a longer time period.  

The legs that are particularly stressed (due to current inclination of the body and to 
the fact that are performing a retraction movement) tend to slow down nearby legs 



that are also performing a retraction movement. This implies that legs that are under 
stress tend to recruit to their phase nearby legs. The final result is that the legs of the 
same side and of adjacent segments do not move in perfect anti-phase, as in the tripod 
gait, but with a partially overlapping phase. 

5. Conclusions 

In this paper we present a distributed control architecture for a simulated hexapod ro-
bot with twelve degrees of freedom consisting of six homogeneous neural modules 
controlling the six corresponding legs that only have access to local sensory informa-
tion and that interact by producing and detecting signals that diffuse in space.  

The free parameters of the homogeneous neural modules, that regulate the fre-
quency of oscillation of the corresponding leg and the signals that are emitted on the 
basis of the current position of the leg and of the signals detected have been set 
through an evolutionary method in which variation of the free parameters are retained 
or discarded on the basis of the global behavior exhibited by the robot in the environ-
ment. This method allows evolving robots to select solutions that exploit properties 
emerging from the interaction between the neural modules and between the robot and 
the environment.   

The analysis of the evolved neural controllers indicates that the six homogeneous 
neural controllers converge on an appropriate gait on the basis of extremely simple 
control mechanisms. In some of the replications, in particular, coordination and gait 
selection is achieved on the basis of a single signal. This implies that a single rule 
(that accelerates or decelerates the frequency of oscillation of nearby legs depending 
on the state of the leg that detect the signal) is sufficient to converge on an a stable 
and effective gait.  

Finally, we observed that evolved robots generalize their ability to produce an ef-
fective walking behaviour also when they are loaded with additional weight by dis-
playing an ability to select a tripod or a tetrapod gait in the normal condition and in 
test conditions in which they are loaded with an additional weight, respectively. 
Overall, the obtained results suggest that an hexapod robot can be controlled on the 
basis of fully homogeneous distributed control system in which the interaction be-
tween neural modules is only regulated by the distribution in space.  
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