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Abstract— Active perception refers to a theoretical approach
to the study of perception grounded on the idea that perceivig
is a way of acting, rather than a cognitive process whereby
brain constructs an internal representation of the world. The
operational principles of active perception can be effectiely
tested by building robot-based models in which the relation
ship between perceptual categories and the body-environme
interactions can be experimentally manipulated. In this paer,
we study the mechanisms of tactile perception in a task in wich
a neuro-controlled anthropomorphic robotic arm, equipped
with coarse-grained tactile sensors, is required to percepally
discriminate between spherical and ellipsoid objects. Thessults
of this work demonstrate that evolved continuous time non-
linear neural controllers can bring forth strategies to allow the
arm to effectively solve the discrimination task.

I. INTRODUCTION

they interact with environment (i.e., how they behave, in
order to solve their task).

This paper illustrates how a further elaboration of adaptiv
methods proposed in related studies can be successfully
applied to a significant more complex scenario [3], [4],
[9], [10]. In particular, we demonstrate how a non-trivial
problem which consists in perceptually categorizing ofgjec
with different shapes can be solved in an effective and rtobus
way through an evolutionary adaptive method. With this
method, free parameters (i.e., those that are modified glurin
the adaptive process) encode features that regulate the fine
grained interaction between the robot and the environment.
The adaptive process consists in retaining or discardieg th
free parameters on the basis of their effects at the levéieof t
overall behaviour exhibited by the robot (see [11], [12] for

An important consequence of being situated in an enviromn illustration of the methodological approach employed).

ment consists in the fact that the sensory stimuli expeednc The proposed scenario involve a simulated anthropomor-
by a robot are co-determined by the action performed by thghic robotic arm, equipped with coarse-grained tactile- sen
robot itself. That is, the actions and the behaviour exaibit sors and propriosensors which encode the position of the
by the robot later influence the stimuli sensed by the roboarm and of the hand (see Figure 1). The robot is asked to
their duration in time, and the sequence with which theperceptually categorize spherical and ellipsoid objethse

are experienced. This implies that: (i) perception (i.ee t two objects are rather similar (i.e., the longest radiushef t
ability to categorize objects and events in the environinengllipsoid is only 20% longer than the radius of the sphere).
is strongly influenced by action [1]; and (ii) sensory-motoiThe robot is allowed to interact in different trials (eacstiag
coordination (i.e., the ability to act in order to sense stimar 4 seconds) with different objects (one at a time) placed over
sequence of stimuli which enable and/or favour the ability ca table. The objects are placed in the two different initial
the robot to perform its task) is a crucial aspect of peroepti locations shown in Figure 1(c). Moreover, ellipsoid obgect
and more generally of situated intelligence [2], [3], [4],[ are placed in orientations which are randomly chosen, ih eac
[6]. trial, within the four sectors shown in Figure 1(d).

Although the importance of the topic is now widely recog- The free parameters that are varied during the adaptive
nized, our understanding of how natural organisms perceiyocess consists in the synaptic weights and in the time
actively their environment is still limited to few specifiages constant of the neurons of a continuous time neural coetroll
(e.g., [7], [8]). Similarly, our ability to build artificiabystems shown in Figure 2. Variation of the free parameters are
which are able to exploit sensory-motor coordination i stiretained or discarded on the basis of the ability of the robot
very limited. The first type of limitation can be explainedto: (i) categorize the shape of the objects at the end of
by considering that experimental research rarely takes ineach trial (i.e., to label objects with different shapeshwit
account detailed data encoding how organisms interact witton-overlapping outputs in a two-dimensional categoiozrat
their environment over time. The second type of limitatiorspace); and (ii) keep touching the object with the palm of
can be explained by considering that, from the point of viekhe hand. The robots are thus left free to determine how to
of the designer of the robot, identifying the way in whichinteract with the object (providing that they keep touching
the robot should interact with the environment in order téhe object with the palm) and how to label each category
sense the favourable sensory states is extremely diffonk. (provided that the labels for the two objects do not overlap
promising approach, in this respect, is constituted by takmp in the categorization space). In the next four sections, we

methods in which the robots are left free to determine ho@escribe in details the characteristics of the body of theto
of the sensors and of the actuators, of the neural controller

of the evolutionary algorithm, and of the fitness function.
In section VI, we describe the obtained results. Finally, in
section VI, we draw our conclusions and we illustrate our
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Fig. 1. The kinematic chain (a) of the arm, and (b) of the haylinders represent rotational DOFs. The axes of cylindedgcate the corresponding
axis of rotation. The links among cylinders represents tbiel tonnections that make up the arm structure. The nunfoens 1 to 10 refer to the parts
of the hand equipped with tactile sensors whose readingsnps of the robot controller. See the text for details oa ttotation. (c) The two initial
positions. Angle of joints/y, ..., J7 are {—50°, —20°, —20°, —100°, —30°,0°, —10°} for position A, and{—100°,0°,10°,—30°,0°,0°, —10°} for
position B. The sphere and the ellipsoid viewed (d) from &hde) from the left. The radius of the sphere is 2.5 cm. Thd afdhe ellipsoid are 2.5,
3.0 and 2.5 cm. In (d) the arrows indicate the intervals witlvhich the initial rotation of the ellipsoid is set.

future plans. which is for the axial rotation. This rotation makes possibl
to move the thumb towards the other fingers (see [13] for
II. THE ROBOT' S STRUCTURE a detailed description of the structural properties of the
The simulated robot consists of an anthropomorphi@™)- The joints of the arm are actuated by two simulated
robotic arm with 7 actuated degrees of freedoms (hereaf@ptagonist muscles implemented accordingly to the Hill's
DOFs) and a hand with 20 actuated DOFs. ProprioceptiyBUscle model, as detailed in the next Section.
and tactile sensors are distributed on the arm and the hand.
The robot and the robot/environmental interactions are sim
ulated using Newton Game Dynamics (NGD), a library for
accurately simulating rigid body dynamics and collisions The agent controller consists of a continuous time recur-
(more details atwwv. newt ondynami ¢s. con). The arm rent non-linear network (CTRNN) with 22 sensory neurons,
consists mainly of three elements: the arm, the forearm, addinternal neurons, and 18 output neurons (see Figure 2 and
the wrist (see Figure 1(a)). These elements are connectsido [14]). At each time step, the activation valugsof
through articulations displaced into the shoulder (joinfor  sensory neurons = 1,..,7 is updated on the basis of the
the extension/flexion/; for the abduction/adduction, antj  state of the proprioceptive sensors of the arm and of the wris
for the supination/pronation movements), the elbow (joint which encode the current angles, linearly scaled in thegang
for the extension/flexion movements), and the wrist (joints—1, 1], of the seven corresponding joints located on the arm
Js, Jg, J7 for the pitch/rolllyaw movements). and on the wrist (i.e., jointsy, Jo, Js, Js, J5, Jg, and Jy
The robotic hand is composed of a palm and fourteeim Figure 1(a)). The activation valugs of sensory neurons
phalangeal segments that make up the digits (two for the= 8,..,17 is updated on the basis of the state of tactile
thumb and three for each of the other four fingers) corsensors distributed over the hand. These sensors aredocate
nected through 15 joints with 20 DOFs (see Figure 1(b)pn the palm, on the second phalange of the thumb, and on
The joints in the hand belong to three different typesthe first and third phalange of each finger (see Figure 1(b)).
metacarpophalangeal (MP), proximal interphalangeal JDIPThese sensors return 1 if the corresponding part of the hand
and distal interphalangeal (PIP). All of them bring forthis in contact with any another body (e.g., the table, the
the extension/flexion movements of each finger while onlgphere, the ellipsoid, or other parts of the arm), otherwise
the MP joints are for the abduction/adduction movemen®. The activation valueg; of sensory neurons= 18, ..,22
(Figure 1(b)). The thumb has an extra DOF in MP jointss updated on the basis of the state of the hand proprioeeptiv

IIl. THE ROBOT' S SENSORS CONTROLLER, AND
ACTUATORS
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sensors which encode the current extension/flexion state ¢ P Actuators Categorization

the five corresponding fingers (i.e., the state of the MP-B * ds 48 Avide
joint for the thumb and the MP joints of the other fingers). lOOOOOOOOEOOOOC)'
The readings of the hand propriosensors are linearly scale
in the rang€0, 1] (with O for fully extended and 1 for fully

flexed finger). To take into account the fact that sensors ar

noisy, tactile sensors return, with 5% probability, a value
different from the computed one, and 5% uniform noise is
7

added to proprioceptive sensors. |éoooo'oo| IéoooooooogJ lgooogt
Internal neurons are fully connected. Additionally, each R Fropie e e Hand Fraprio-

internal neuron receives one incoming synapse from eacl SEREGIE
sensory neuron. Each output neuron receives one incoming

synapse from each internal neuron. There are no direct con- Fig. 2. The architecture of the neural controllers.
nections between sensory and output neurons. The network

neurons are governed by the following equation:

sensors

muscles controlling the seven DOFs of the arm and have

) —yi + gli; i=1,.,22 been set to the following valued{,;, = 3.0, Ry = 2.5,
TilYi = —yﬁZ}’;n wiio(y; + B;); i =23,..,48; Loae = 3.7, b = _0.9,_A5h = 4.34 With_the exception of
) parametefl,, .., which is set ta3000N for joint Jo, to 300N
n=1,m=30fori=23,..,30; (1)  for joints Jy, Js, Ju, and Js, and to 200N for joints Jg
n =23, m =30 fori=31,..,48; and.J;. Muscle elongation is simulated by linearly mapping
1 within specific angular ranges the current angular posttion
ofz) = 14+e® each DOF (see [13] for details).

In this equation, using terms derived from an analogy with The joints of the hand are actuated by a limited number
real neuronsy; represents the cell potential,the decay con- of independent variables through a velocity-proportiaaei-
stant,g is a gain factor/; the intensity of the perturbation on troller. Thatis, for the e_xt_ension/flexion, the force egdr_by
sensory neuroi w;; the strength of the synaptic connectiontn® MP, PIP, and DIP joints (MP-A, MP-B, and PIP in the
from neuron; to neuroni, 3; the bias termg(y; + ;) the ~ €ase (_)f the thumb) are controlled by a two steps process: first
firing rate.; with i = 23,..,30, 8; with i = 1,..,48, all the d is set equal to the fllrlng rate(y; + 3;) of the output
the network connection weights;;, and g are genetically neuroni, linearly mapped into the range-90°, 0°J; second,
specified networks’ parameters; with i = 1,...,22 and the desired angular positions of the finger joints MP, PIRR DI
i = 31,..,48 is equal toAT'. There is one single bias for all are set tof, 6, and(2.0/3.0) - # respectively. For the thumb,
the sensory neurons. its movement towards the other fingers (i.e., the extra DOF in
The activation valueg; of motor neurons determine the MP joints) corresponds to the desired angle-¢2.0/3.0)/6.
state of the simulated muscles of the arm. In particular, thE'® DOFs that regulate the abduction/adduction movements
total force exerted by a muscle is the sum of three forcé¥ the fingers are not actuated.

Ta(o(yi + B:), )+ Tp(z) + Ty (i), which are calculated on ~ The activation valu_ea;/i of output neurons; = 47,48
the basis of the following equations: are used to categorize the shape of the object (i.e., to

2 produce different output patterns for different objecteyp
AS Tmaz - R .
Ta=o(yi + i) <_ h (x—Ry) n Tmaz) (2) (see Section V).

2
B2 R IV. THE EVOLUTIONARY ALGORITHM
Ash:ﬁ A simple generational genetic algorithm is employed to
maw L ) set the parameters of the networks (see [15]). The initial
exp {Ksh%} -1 population contains 100 genotypes. Generations following
Tp=Tnaz cap (K h} 1 the first one are produced by a combination of selection
Ty—=b-i ° with elitism, and mutation. For each new generation, the 20

highest scoring individuals (“the elite”) from the previou
whereo(y; + ;) is the firing rate of output neurons=  generation are retained unchanged. The remainder of the
31,..,46, with 4 = 31,32 for joint Jy, ¢« = 33,34 for joint new population is generated by making 4 mutated copies
Ja, i = 35, 36 for joint Js, i = 37, 38 for joint J4, i = 39,40  of each of the 20 highest scoring individuals. Each genotype
for joint Js5, i = 41,42 for joint Jg, i = 43,44 for joint is a vector comprising 420 parameters. Each parameter is
J7. x is the current elongation of the musclé;,,., and encoded with 16 bits. Initially, a random population of
Ry, are the maximum and the resting length of the muscleectors is generated. New genotypes, except “the elite’, ar
Tmaz 1S the maximum force that could be generatédy; produced by applying mutation. Mutation entails that each
is the passive shape factor ahds the viscosity coefficient. bit of the genotype can be flipped with a 1.5% probability.
The parameters of the equation are identical for all fourteeGenotype parameters are linearly mapped to produce network



parameters with the following ranges: biaggsc [—4, —2], score over a set of 16 trials and it is computed as follows:
weightsw;; € [—6,6], gain factorg € [1,10] for all the

sensory neurons; decay constamiswith i = 23,..,30 FF = P+ ®3)
are exponentially mapped inta0-2,10°3] with the lower 1 & de

bound corresponding to the integration step-size used to Ro= EZ (1 N dmam)

update the controller and the upper bound, arbitrarily ehps =t .
corresponds to abOLé of the maximum length of a trial P = 0 if £y <1
(i.e., 2 s). Cell potentials are set to 0 when the network 1-— min{a‘j’;‘(’(cis)f‘affa)(clj)} otherwise

is initialised or reset, and circuits are integrated using t . , ,
forward Euler method with an integration step-siad’ — with d. the euclidean distance between the object and the

0.01 (see [16]). cent_re of th_e palm at the end of the tria dmam_ the
maximum distance between the palm and the object when
located on the tablef; rewards the robots for touching the

V. THE FITNESSFUNCTION objects. F;, corresponds to the inverse of a quantity which
indicates how much the categorization spacgsand Cp
During evolution, each genotype is translated into an areverlap. F» = 1 if Cs and Cp do not overlap (i.e., if
controller and evaluated 8 times in position A and 8 time€’s NCp = (). The fact that, for each individuak; must be

in position B (see Figure 1(c)). For each position, the arnh to be rewarded with¥,, constrains evolution to work on

experiences 4 times the ellipsoid and 4 times the sphere fstrategies in which the palm is constantly touching the atbje

a total of E = 16 trials. In each position, the rotation of This condition has been introduced because we thought

the ellipsoid with respect to the z-axis is randomly set i thit represents a pre-requisite for the ability to percepyual

range[350°,10°] in the first presentation35°,55°] in the discriminate the shape of the objects. However, alteraativ
second presentatiofg0°, 100°] in the third presentation, and formalisms which encode different evolutionary selective

[125°,145°] in the fourth presentation (see also Figure 1(d))ressures may work as well.

At the beginning of each trial, the arm is located in the

corresponding initial position (i.e., A or B), and the state VI. RESULTS

of the neural controller is reset. A trial lasts 4 simulated Eight evolutionary simulations, each using a different

seconds (T=400 time step). A trial is terminated earlier iRandom initialisation, were run for 500 generations. Fég8r

case the object falls off the table. shows the fitness of the best individual at each generation fo

In each triale, an agent is rewarded by an evaluatiorthe best three evolutionary runs. Notice that, after gaitera
function which seeks to assess its ability to recognise ar&DO0, the best individuals of all the three runs display optim
distinguish the ellipsoid from the sphere. This requires aar close to optimal performance. This means that these
agent to be able to categorize the objects; that is, to plag®lividuals manage to touch the objects with the palm and
them in non-overlapping regions of a two-dimensional catde distinguish ellipsoid from spherical objects locatedhie
gorization space&” € [0, 1] x [0,1]. The categorization and two different spatial locations and regardless of the roat
the evaluation of the agent’s discrimination capabilitiss around the z-axis of the ellipsoid.

done in the following way: In the next parts of this section, we show the results

(pf two series of post-evaluation tests aimed to estimate

the robustness of the best evolved categorization stestegi

(A) under circumstances in which the effect of favourable

conditions linked to the initial rotation of the ellipsoidea

« in each triale, the agent represents the experienced o
ject (i.e., the spher# or the ellipsoidD) by associating
to it a rectangleRs. or Rp. whose vertices are:

the bottom left vertex:

. . . .
0.95T<1<T o (yar(t) + Bar), 0.95%11<I%<T0(y48( )+ Bas))

2.0

the top right vertex:

15
|

1.0

L t
0957 St<T o (yar (t) + Bur). 0.95nTli)t(<TU(y48( )+ Bas))

Fitness score

0.5
|

« the sphere category, referred to @s, corresponds to g |
the minimum bounding box of aRs..; the ellipsoid cat- 1 100 200 200 100 500
egory, referred to a€’p, corresponds to the minimum Generations
bounding box of allRp..

Fig. 3. Fitness of the best individual at each generatiorhefltest three
The final fitnessF'F attributed to an agent is the averageevolutionary runs.
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Fig. 4. (a) TestPy, individual I;. Continuous grey line rectangles correspond?ig.. Continuous black line rectangles corresponditg.. Dashed line
rectangles are non-overlapping minimal bounding boxesmedl to a<’'s; and C'p;. Pairs of non-overlapping minimal bounding boxes whichirdig] for
each post-evaluation te$t; with ¢ = 1, .., 5, the categorization responses of (b) individdg (c) individual I2; and (d) individualls.
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ruled out, and (B) under circumstances in which the initiathe three selected highest fitness individuals are capdble o
position of the object and of the hand varies. Finally, walistinguishing and categorising the ellipsoid from theesgh
analyze the dynamics of the robot’s categorization behavio for whatever rotation of the former object around the z-axis

. - . For each selected individual, teBf is repeated 5 times (i.e.,
A. Robustness with respect to the initial rotation of th% with i — 1, .. 5), with each repetition differently seeded to

ellipsoid o : :
P ) ~_ _ guaranteed random variations in the noise added to sensors
To verify to what extent the robots are able to dlscrlmlnat@eadings_

between the two type of objects regardless the initial erien
tation of the ellipsoid object, we tested the evolved robots The performance of the individud} at testP; is quantita-
with objects placed in all possible initial orientationsofd tively established by considering all the responses giyef b
precisely in the tesP, the three highest fitness individualsover 3600 trials (i.e., 720 trials per teBf, repeated 5 times,
(Z; with j = 1,2,3) taken from run n. 2, are demanded towith j = 1,2,3, andi = 1,..,5 ). In each post-evaluation
distinguish for 360 times the two objects placed in positiotrial, the response of the individual is based on the firing
A, and for 360 times placed in position B. In each positiontates of neurons 47 and 48 during the last 4 time steps of
an individual experiences half of the times the sphere, (i.eecach traile. In particular, the smallest and the highest firing
for 180 trials) and half of the times the ellipsoid (i.e., forrates recorded by both neurons are used to define the bottom
180 trials). Moreover, trial after trial, the initial rotah of left and the top right vertices of a rectangle, as illusulate
the ellipsoid around the z-axis changesl®f from 0° in the Section V. At the end of each tes} (i.e., a set of 720 trials),
first trial to 179° in the last trial. we have 360 rectangles associated to trials in which the
Note that, compared to the evolutionary conditions, ifndividual experienced the sphere (hereafter, rectan@ies,
which the individuals is allowed to perceive the ellipsoidand 360 rectangles associated to trials in which the indalid
only 4 times with 4 different initial rotationsP; is a experienced the ellipsoid (hereafter, rectandtes). At end
severe test. The results unambiguously tell us whether or naf the five post-evaluation test3, we build five pairs of non-
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number of Rs. and Rp. rectangles that can be included
in Cs; andCp; respectively, by fulfilling the condition that
none of theCg; overlaps with any of th&'p,;.

Figure 4(a) and Figure 4(b) visually illustrate this evalua
tion process for individual;. In Figure 4(a), which refers to

% of Success

40

20

overlapping minimal bounding boxes (i.€s; andCp;), a g Joint J;
pair for each test, as explained in Section V.

At this point, we take as a quantitative estimate of the
robustness of an agent categorization strategy, the Highes ||
testP;, Rg. are the grey continuous line rectangles dtsl Hlmlm ||
are the black continuous line rectangles. The grey dashed L ular Displacement — b Bignt
line rectangle isCs; and the black dashed line rectangle (

is the Cp;. The Rp. not included in theCp; are those &

rectangles which needed to be excluded in order to have
none of Cs; overlapping with any of theCp;. The five |
pairs of minimal bounding boxes, that correspond to the
performance ofl; during the five testP;, can be seen in

Figure 4(b). Figure 4(c) and Figure 4(d) show the five pairs

100

6f

of bounding boxes corresponding to the performancé,of

% of Success

40

)

Joint'J,
and I5 respectively. l | | |

Table | shows, for each selected individual and for each

test P; the number of rectanglesRg. and Rp.) for post-

evaluated individual §; with j = 1,2,3), and for post- |
evaluation test?; with ¢ = 1,..,5, that can be included in 0 D w4 Anquiar Displacement — — ZUpZ']Q =
Cs; andCp; by fulfilling the condition that none of th€'g;

20

I
—

9

! X (b)
overlaps with any of th€'p,. The last row of this Table tells
us that the total number of rectangles for each individual, Joint J4
that can be included by the minimal bounding boxes without ||
breaking the non-overlapping rule, is extremely high. From 3
this, we conclude that the selected individuals are extheme | |
good in discriminating and categorising the sphere and the §
ellipsoid regardless of the rotation of the ellipsoid. @ i
[o)=1| il
TABLE | s
NUMBER OF RECTANGLES Rge + Rpe, FOR THE FIVE & H
POSTFEVALUATION TEST P; OF THE THREE INDIVIDUAL Ij. THE TOTAL l“m““m
ROW IS THE SUM OF ALL RECTANGLES FOR ALLP;. o L G L L Zgﬂ
Flexion«——— Angular Displacement ——Extension
I I> I3
Py 717 715 714 (©)
Py 719 712 709 . i
Ps 716 711 708 = oint Jg
P, 717 716 713 HM“MM M
Ps 718 718 713 s
Tot. | 3587 of 3600| 3572 of 3600| 3557 of 3600

60

B. Robustness with respect to the initial position of the
objects

In this section, we show the results of further post-
evaluations in which we test the robustness of individijal
in trials in which the initial positions of object and of thema o 3026 22 18 -4 106 )

. h . Left «——— Angular Displacement ———» Right
change. Note that, an exhaustive analysis on the capadiflity g
the robot to perform the categorization task for objectseia @
at any spatial position reachable by the hand, it would be ) _

. Ilv expensive due to the large number of ar ig. 5. These graphs show the percentage of success in yadstion
CompUtat'or_]?‘ y exp 9 g Mssts in which the initial position of one joint is displacddark grey bars
objects positions to test and to the fact that each positfon @fer to % of success (over 1800 trials) with respect to dismhents applied
the object can be reached through a large number of differgptioints in position A. Light grey bars refer to % of successef 1800

. L trials) with t to displ t lied to joints dsiion B.
postures of the arm. Therefore, we decided to limit thiials) with respect to displacements applied to joints asipon

40

% of Success

20




analysis only to those circumstances in which the movemehigure 6(a) refers to trajectories starting from the fitst(1)
of the arm with respect to the position experienced duringnd ending to the last & T') time step. Figure 6(b) refers
evolution are determined by displacements of only one joirto trajectories starting from th20*" (¢ = 20) and ending to
at time. In particular, joint/y, Js, Jy, and Js are displaced, the last { = T') time step. By comparing the two graphs in
one at time, and by intervals af, up to a displacement of Figure 6, we notice thaf; moves in the categorization space
£30° from the initial positions experienced during evolutionby reaching in less than 0.2 s (from the beginning of the)trial
(see Figure 1(c) for details). For each joint and for edth an area in the proximity of the minimal bounding boxes (see
displacement, we repeated tedts with i+ = 1,..,5 above Figure 6(b), dashed rectangles). During the large majority
described. For every displacement, the table and the sbjecf the arm-object interactions, following the first 0.2 I,
are repositioned to always keep the object below the palmoves relatively slow in the categorization space, with the
In these tests, a trial with the sphere/ellipsoid is conside trajectories that tend to diverge after 3 s. Moreover, wéceot
successful if theRs./Rp. rectangle falls completely within that, as expected, the standard deviation is higher forigie t
the region delimited by the minimal bounding b&%;/Cp;  with the ellipsoid (see Figure6(b)). This is clearly duehe t
shown in Figure 4(b). Joinf;, J;, and J; have not been fact that, trial after trial, the ellipsoid rotates arour tz
tested because any single displacement of just one of theses.
joints, followed by a repositioning of the table and the ahje ~ The identification of the mechanism which allow the
would disrupt the original spatial relationship (e.g., fedm evolved robots to reliably discriminate between the two
parallel to the XY plane and to the table) between the objetype of objects, is a particularly challenging task givea th
and the hand as shown in Figure 1(c). complexity of the robot, with many sensors, many actuators
The results of these tests are shown in Figure 5. land a recurrent non-linear control structure. Performimg t
these graphs, which show the percentage of success pemlysis goes beyond the objectives of the paper, and it is
displacement, dark grey bars refer to tests in which thleft for future work.
displacements are with .respect tlo position A, while Ijgtaygr V1. CONCLUSIONS
bars refer to tests in which the displacements are with rspe ) ) ) L )
to position B. We notice that, in position A, the strategy of !N this paper, we described an experiment in simulation
I, can tolerate quite well displacements which concern joirl® Which an anthropomorphic robotic arm, provided with
Js, and those concerning; and.J» up to about an interval tactile sensors and_propnos_ensors dev_elop_s an ability to
of 14° in both directions (see Figure 5(a), and 5(b) dark greferceptually categorize spherical and ellipsoid objette
bars).I; is extremely sensitive with respect to displacemerficauisition of such capacity has been realized through an
from position B for all the tested joints (see Figure 5(al)5( evolutionary method in which the free parameters of .t_he
and 5(c), light grey bars), and with respect to displacemeﬁ?bOts neural controller have been evolved for the ability

from position A for joint.J; (see Figure 5(c), dark grey bars).to proo_luce d_ifferent categorization outputs _and for tough_i
the object with the palm of the hand. During the adaptive

C. Analysis of the dynamics of the robot's categorizatioRrocess the robots are left free to determine how they
behaviour interact with the objects (provided that they keep touchiirgy
objects with their palm) and how they represent the objects
experienced within the two-dimensional categorizatioaicsp
{:orresponding to the output of the two categorization units
provided that the areas corresponding to the two type of

Looking at the movies of the performances &f (i.e.,
the best performing individual in Table 1), we see tha
this individual starts grasping the object in the first tim
steps of each trial, and then handles it by letting it slowl bjects do not overlap).

roIIhm betwee(r; trr:e ;abls and r;[he paimAfter ;bﬁut 2 The coarse-grained sensory apparatus of the robotic arm,
s the arm an the and reach a posturg WNICh TeMalfls, need to control 16 different actuators (which affect the
substantially stable until the end of the trial. In order 1Qate of 27 DOFs), the need to master the effects arising
understand.how the robot's categorizatign outputs.disii;‘rg from the physical interactions between the robot and the
the two objects We run further analysis. In _p_art|cular, Wenvironment, and the small differences between the two
looked at_the trajectories of _the_average decision outputs bbjects, make the perceptual categorization task paatigul

the two-dimensional categorization spage(y(t)s + fu), challenging. Nevertheless, the best evolved robots agetabl

o(y(t)ss + fas)}, recorded in testPy, by distinguishing 5006mpjish their task robustly by displaying close to optim
between the average values recorded over a set of 180 triadg P ! us'y oy Tisp aying el

Y with the ellinsoid i - q ! dark rformance, regardless of the orientation of the objddtts.
(i) with the ellipsoid in position A and B (see Figure 6, dar analysis of the best evolved controllers also indicates$ tha

continuous lines, and dark dashed lines respectively); a'?ﬁiey are able to generalize their ability, within limits,rfo

(i V\.'ith the sphere in position A an(_:i B (see Fig_ure 6, 9 hitial positions of the objects and of the arm which have
continuous lines and grey dashed lines respectively)edrill never been experienced during the evolutionary phase.

polygons around each trajectory are the standard devgation The analysis of the motor behaviour indicates that the
IMovies of the performances of the best evolved individuald ather QVOlV:d rct))bOts afccombp“Sh?fhelr taﬁk [E)y aCtlverdm?]mpI}:Iatd

complementary materials can be foundhatt p: / /| aral . i stc.cnr. Ing the objects tor about s untl the arm_ and the 6?”

it/esm discrimnation. of the robot assume a posture that remains substantially
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0(y(t)4s + Bas)
0(y(t)4s + Bas)

0.02534
0.02642

T T T T
0.02729 0.1812 0.02729 0.04111

o(y(t)a7 +Ba7) o(y(t)s7 +Ba7)
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Fig. 6. TestPy, individual I1. Trajectories of the average decision outputs in the twoedisional categorization spaee(((t)a7 +547), o(y(t)as +48)),

with () 1 < ¢t < T'; and (b)20 < ¢t < T'. Black continuous and dashed lines refers to the averagevakcorded over sets of 180 trials with the ellipsoid

in position A and B, respectively. Grey continuous and dddimes refers to the average values recorded over sets ofriaBOwith the sphere in position
A and B, respectively. Filled polygons around each trajgcare the standard deviations.

stable during the rest of the trial. The analysis of the[2] R. Pfeifer and C. Scheiet/nderstanding Intelligence Cambridge,

categorization process in evolved robots indicates they th _ MA: MIT Press, 1999. _ _
[3] S. Nolfi, “Power and limits of reactive agentsNeurocomputing

start to perceptually differentiate the two categoriesady vol. 42, pp. 119-145, 2002.

after about 0.2 s. From this time on until the end of the[4] R. D. Beer, “The dynamics of active categorical peramptin an

trial, the categorization outputs further differentiatgibthey evolved model agentAdaptive Behaviorvol. 11, pp. 209-243, 2003.
h eith < o fth o [5] E. Tuci, C. Ampatzis, F. Vicentini, and M. Dorigo, “Evahg homo-

reach either area (g or D) of the categorization space. geneous neuro-controllers for a group of heterogeneoustsoboor-

In future work, we intend to analyze in details the mecha- dinated motion, cooperation, and acoustic communicatidntficial

nisms which allow the robot to discriminate between the two__ Life. vol. 14, no. 2, pp. 157-178, 2008. .
[6] S. Nolfi, “Behavior and cognition as a complex adaptivesteyn:

categor?es _Of o_bjects. In partiCUIar we Wi_"_ analyse whethe Insights from robotic experiments,” Bhilosophy of Complex Systems,
categorization is accomplished by exploiting the effedts 0  Handbook on Foundational/Philosophical Issues for Com8gstems

the interaction between the robot and the environment (med't] in Science C. Hooker, Ed.  Elsevier, In Press.

. ip . N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brd@iyom
ated by the execution of a specific behaviour) on the posture” jnsect vision to robot vision,Philosophical Transactions: Biological

assumed by the hand and/or by the arm (as observed in Sciencesvol. 337, no. 1281, pp. 283-294, 1992.

[17], in a much simpler setup). We will look at the role (8] mégwin"g\/,i,sl\l“:t'ufgt%” é%go%gti‘;’;li”%gsiggga inkees retinotopic
of the tactile sensation, and in particular, to what extént i C. Scheiér, R. Pfeifer, and Y. Kunyioshi, “Embedded mbumetworks:

contributes to the categorization process. We will analyse exploiting constraints,’Neural Networks vol. 11, pp. 1551-1596,

whether categorization is affected by how the states of the 1998
9 y 10] S. Nolfi, “Categories formation in self-organizing eauled agents,”

sensors Change over ti_me or simply by their current state, in Handbook of Categorization in Cognitive Scienéé Cohen and
and to what extent the internal states of the controllercaffe C. Lefebvre, Eds. Elsevier, 2005, pp. 869-889.

the way in which the robot manipulate the object. [11] S. Nolfi and D. Marocco, “Evolving visually-guided rotso able
to discriminate between different landmarks,” Flom Animals to

Mor_eover, we plap to inveSt_igate: 0) hOW_ th? Fepre-  Animats 6. Proc. of the VI Int. Conf. on Simulation of Adagptiv
sentation of Categorles varies in the Categorlzatlon space Behavior J. A. Meyer, A. Berthoz, D. Floreano, H. L. Roitblat, and

; ini ; S. W. Wilson, Eds. Cambridge, MA: MIT Press, 2000, pp. 413-41
during the training process and which are the effects ?IZ] | Harvey, E. Di Paolo. R, Wood. M. Quinn, and E. Tuci, ‘Evtionary

the di.men_Siona“ty of the_categoriza}t.ion space, (”) wieeth robotics: A new scientific tool for studying cognition&rtificial Life,
experiencing a larger variety of positions/orientatiofishe vol. 11, no. 1-2, pp. 79 — 98, 2005.

objects during the evolutionary phase, helps the robots ! G- Massera, A. Cangelosi, and S. Nolfi, “Evolution of [peasion
. ability in an anthropomorphic neurorobotic arnfrfont. Neurorobot,
develop more robust categories; and (iii) to what extent the | 1, 2007.
model scale up to a larger number of categories and objdt#] R. D. Beer and J. C. Gallagher, “Evolving dynamic neuratworks
shapes for adaptive behavior,Adaptive Behavigrvol. 1, no. 1, pp. 91-122,
’ 1992.
[15] D. E. Goldberg, Genetic algorithms in search, optimization and
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