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1. I ntroduction 
 
Artificial neural networks are computational models of nervous systems. Natural 
organisms, however, do not possess only nervous systems but also genetic 
information stored in the nucleus of their cells (genotype). The nervous system is 
part of the phenotype which is derived from the genotype through a process called 
development. The information specified in the genotype determines aspects of the 
nervous system which are expressed as innate behavioral tendencies and 
predispositions to learn. When neural networks are viewed in the broader 
biological context of Artificial Life, they tend to be accompanied by genotypes 
and to become members of evolving populations of networks in which genotypes 
are inherited from parents to offspring (Parisi, 1997; 2001).  

Artificial neural networks can be evolved by using evolutionary algorithms 
(Holland, 1975; Schwefel, 1995; Koza, 1992). An initial population of different 
artificial genotypes, each encoding the free parameters of an individual neural 
network (e.g., the connection strengths and/or the architecture of the network 
and/or the learning rules), are created randomly. Each individual network is 
evaluated in order to determine its performance in some task (fitness). The fittest 
networks are allowed to reproduce (sexually or nonsexually) by generating copies 
of their genotypes with the addition of changes introduced by some genetic 
operator (e.g., mutations, crossover, duplication). This process is repeated for a 
number of generations until a network that satisfies the performance criterion 
(fitness function) set by the experimenter is obtained (for a review of 
methodological issue see Yao, 1993). 

 
1.1 Evolution and Development 

 
A cornerstone of biology is the distinction between inherited genetic code 
(genotype) and the corresponding organism (phenotype). What is inherited from 
the parents is the genotype. The phenotype is the complete individual that is 
formed according to the instructions specified in the genotype.  



 2 
 

In simulations with evolving neural networks, the genotype might encode all 
the free parameters of the corresponding artificial neural network or only the 
initial value of the parameters and/or other parameters that affects learning. In the 
former case the network is entirely innate and there is no learning. In the latter 
networks change both philogenetically across a succession of generations and 
ontogenetically during the life of the individual, i.e., during the period of time in 
which they are evaluated.  

Evolution is critically dependent on the distinction between genotype and 
phenotype, and on their relation, i.e., the genotype-to-phenotype mapping. The 
fitness of an individual, that affects selective reproduction, is based on the 
phenotype but what is inherited is the genotype, not the phenotype. Furthermore, 
while the genotype of an individual is one single entity, the organism can be 
considered as a succession of different phenotypes taking form during the 
genotype-to-phenotype mapping process, each derived from the previous one 
under genetic and environmental influences.  

When the genotype-to-phenotype mapping process takes place gradually 
during an individual's lifetime we can talk of development. In this case, each 
successive phenotype, corresponding to a given stage of development, has a 
distinct fitness. The total fitness of a developing individual is a complex function 
of these developmental phases. Evolution must ensure that all these successive 
forms are viable and, at the same time, that they make a well-formed sequence 
where each form leads to the next one until a more or less stable (adult) form is 
reached. This puts various constraints on evolution but it also offers new means 
for exploring novelty. Small changes in the developmental rates of different 
components of the phenotype, for example, can have huge effects on the resulting 
phenotype. Indeed it has been hypothesized that in natural evolution changes 
affecting regulatory genes that control rate of development have played a more 
important role than other forms of change such as point mutations (Gould, 1977). 

Although the role of the genotype-to-phenotype mapping and of development 
has been ignored in most of the experiments involving artificial evolution, there is 
now an increasing awareness of its importance. Wagner &  Altenberg (1996) 
write: "In evolutionary computer science it was found that the Darwinian process 
of mutation, recombination and selection is not universally effective in improving 
complex systems like computer programs or chip designs. For adaptation to 
occur, these systems must possess evolvability, i.e. the ability of random 
variations to sometimes produce improvement. It was found that evolvability 
critically depends on the way genetic variation maps onto phenotypic variation, an 
issue known as the representation problem." (p. 967).  

 
1.2 Ar tificial life Approaches to M odeling Neural Development 
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In the next sections, different approaches to modeling neural development in 
artificial life simulations will be presented. They range from simple direct 
genotype-phenotype encoding to more complex methods such as axonal growth, 
cellular encoding, and regulatory models. Furthermore, we discuss some models 
of the interaction between evolution and learning. These models address a 
different type of plasticity in neural network development, that is, the effects of 
ontogenetic learning in the overall evolutionary process. (For a review of neural 
network models of development, see Parisi, 1996, and Parisi and Nolfi, 2001.) 
 
2. Genetic Encoding: Direct Genotype-Phenotype M apping 
 
To evolve neural networks one decision that has to be taken is how to encode the 
network in the genotype in a manner suitable for the application of genetic 
operators. In most cases, all phenotypical characteristics are coded in an uniform 
manner so that the description of an individual at the level of the genotype 
assumes the form of a string of identical elements (such as binary or floating point 
numbers). The transformation of the genotype into the phenotypical network is 
called genotype-to-phenotype mapping.  

In direct encoding schemes there is a one-to-one correspondence between 
genes and the phenotypical characters that are subjected to the evolutionary 
process (e.g. Miller et al., 1989). Aside from being biological implausible, simple 
one-to-one mappings have several drawbacks. One problem, for example, is 
scalability. Since the length of the genotype is proportional to the complexity of 
the corresponding phenotype, the space to be searched by the evolutionary 
process increases exponentially with the size of the network (Kitano, 1990).  

Another problem of direct encoding schemes is the impossibility to encode 
repeated structures (such as network composed of several sub-networks with 
similar local connectivity) in a compact way. In one-to-one mappings, in fact, 
elements that are repeated at the level of the phenotype must be repeated at the 
level of the genotype as well. This does not only affect the length of the genotype 
and the corresponding search space, but also the evolvability of individuals. A full 
genetic specification of a phenotype with repeated structures, in fact, implies that 
adaptive changes affecting repeated structures should be independently 
rediscovered through changes introduced by the genetic operators.  

 
3. Growing methods 
 
The genotype-to-phenotype process in nature is not only an abstract mapping of 
information from genotype to phenotype but it is also a process of physical 
growth (growth in size and in physical structure). By taking inspiration from 
biology, therefore, one can decide to encode growing instructions in the genotype. 



 4 
 

The phenotype is progressively built by executing the inherited growing 
instructions. 
 

 
 

 
 

 
 

 
 

 
 
Figure 1. Development of an evolved neural network. Top: The growing and 
branching process of the axons. Bottom: the resulting neural network after 
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removal of nonconnecting branches and the elimination of isolated neurons and 
groups of interconnected neurons. 
 

Nolfi, Miglino and Parisi (1994) used a growing encoding scheme (see also 
Nolfi and Parisi, 1995) to evolve the architecture and the connection strengths of 
neural networks that controlled a small mobile robot (for a similar method see 
Husband et al., 1994). These controllers are composed of a collection of artificial 
neurons distributed over a 2-dimensional space with growing and branching axons 
(Figure 1, top). Inherited genetic material specifies instructions that control the 
axonal growth and the branching process of neurons. During the growth process, 
when a growing axonal branch of a particular neuron reaches another neuron a 
connection between the two neurons is established. On the bottom of Figure 1 you 
can see the network resulting from the growth process displayed in the top of the 
Figure after the elimination of nonconnecting branches and isolated and non-
functional neurons. However, axons grow and branch only if the activation 
variability of the corresponding neurons is larger than a genetically-specified 
threshold. This simple mechanism is based on the idea that sensory information 
coming from the environment has a critical role in the maturation of the 
connectivity of the biological nervous system and, more specifically, that the 
maturation process is sensitive to the activity of single neurons (see Purves, 
1994). Since the actual sequence of sensory states experienced by the network 
influences the process of neural growth, in this model the developmental process 
is influenced not only by genetic factors but also by environmental factors. 

This type of genotype-to-phenotype mapping allows the evolutionary process 
to select neural network topologies that are better suited to the task chosen. 
Moreover, by being sensitive to environmental conditions, the developmental 
process might display a form of plasticity. Indeed, as shown by the authors, if 
some aspects of the task are allowed to vary during the evolutionary process, 
evolved genotypes display an ability to develop into different final phenotypical 
structures that are adapted to the current conditions.  

 
4. Cellular  Encodings 
 
In natural organisms the development of the nervous system begins with a folding 
in of the ectodermic tissue which forms the neural crest. This structure gives 
origin to the mature nervous system in a succession of three phases: the genesis 
and proliferation of different classes of neurons by cellular duplication and 
differentiation, the migration of neurons toward their final destination, and the 
growth of neurites (axons, dendrites). The growth process described in the 
previous section characterizes very roughly only the last of these three phases. A 
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number of attempts have been made to include other aspects of neural 
development in artificial evolutionary experiments.  

Cangelosi et al. (1994), for example, extended the model described in the 
previous section by adding a cell division and migration stage to the already 
existing stage of axonal growth. The genotype, in this case, is a collection of rules 
governing the process of cell division (a single cell is replaced by two "daughter" 
cells) and migration (the new cells can move in 2D space). The genotype-to-
phenotype process starts with a single cell which, by undergoing a number of 
duplication and migration processes, produces a collection of neurons arranged in 
a 2D space. At the end of this stage the neurons grow their axons and establish 
connections until a viable neural controller is formed (for a related approach, see 
Dellaert and Beer, 1994).  

Gruau (1994) proposed a genetic encoding scheme for neural networks based 
on a cellular duplication and differentiation process. The genotype-to-phenotype 
mapping starts with a single cell that undergoes a number of duplication and 
transformation processes ending up in a complete neural network. In this scheme 
the genotype is a collection of rules governing the process of cell divisions (a 
single cell is replaced by two "daughter" cells) and transformations (new 
connections can be added and the strengths of the connections departing from a 
cell can be modified). In this model, therefore, connection links are established 
during the cellular duplication process.  

In Gruau's model the instructions contained in the genotype are represented 
as a binary-tree structure as in genetic programming (Koza, 1992). During the 
genotype-to-phenotype mapping process, the genotype tree is scanned starting 
from the top node of the tree and then following each ramification. The top node 
represents the initial cell that, by undergoing a set of duplication processes, 
produces the final neural network. Each node of the genotype tree encodes the 
operations that should be applied to the corresponding cell and the two sub-trees 
of a node specify the operations that should be applied to the two daughter cells. 
The neural network is progressively built by following the tree and applying the 
corresponding duplication instructions. Terminal nodes of the tree (i.e., nodes that 
do not have sub-trees) represents terminal cells that will not undergo further 
duplications. Gruau also considered the case of genotypes formed by many trees 
where the terminal nodes of a tree may point to other trees. This mechanism 
allows the genotype-to-phenotype process to produce repeated phenotypical 
structures (e.g., repeated neural sub-networks) by re-using the same genetic 
information. Trees that are pointed to more than once, in fact, will be executed 
more times. This encoding method has two advantages: (a) compact genotypes 
can produce complex phenotypical networks, and (b) evolution may exploit 
phenotypes where repeated sub-structures are encoded in a single part of the 
genotype. Since the identification of sub-structures that are read more than once is 
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an emergent result of the evolutionary process, Gruau defines this method 
Automatic Definition of Neural Subnetworks (ADNS) (Gruau, 1994).  
 
5. Heterochrony in Neural Development 

 
The existence of a variable and plastic ontogenetic development is strictly related 
to the evolution of regulatory genotypes, i.e., genotypes whose main role is to 
control the functioning of simple ontogenetic events. Even though some genes 
directly encode structural molecules, most genetic products consist of regulatory 
elements such as enzymes. These regulatory genes act as ON-OFF switches on 
the complex chain of biochemical events that constitute the three main 
phenomena of cellular development: mitoses, cell differentiation, and migration. 
A regulatory ontogenetic development consists of a variety of interactions 
between the growing organism and its environment.  

In such a regulatory development, the timing of the events, i.e., their temporal 
activation/inhibition, and their rate, i.e., the frequency of occurrence of the 
phenomena, both have a strong impact. The temporal co-occurrence of two or 
more events can prove essential for allowing the activation of a biological 
phenomenon. Even the spatial relation between sub-structures of the developing 
organism is a key factor. The spatial interaction between cells can induce the 
phenomena of cell differentiation or cell migration. These classes of interactions, 
especially the temporal relations occurring during the organism's development, 
constitute the phenomenon known as heterochronic change. Heterochrony 
(McKinney and McNamara, 1991) is the study of the effect of changes in timing 
and rate of the ontogenetic development in an evolutionary context. In particular, 
heterochonic classifications are based on the comparison of ontogenies that differ 
in terms of (1) onset of growth, (2) offset of growth, and (3) rate of growth of an 
organ or other biological traits. These three kinds of change correspond 
respectively to the following couples of heterochonic phenomena: 
Predisplacement and Postdisplacement for an anticipated and postponed growth 
onset, Hypermorphosis and Progenesis for a late and early offset, and 
Acceleration and Neoteny for a faster and slower rate of growth (see also Gould, 
1977). 

Cangelosi and Elman (1995; Cangelosi 1999) have developed a model of 
development that simultaneously simulates many biologically-inspired 
phenomena for the development of neural networks in artificial organisms. They 
use a regulatory genotype in which most of the genes produce elements whose 
role is to control the activation, inhibition, and delay of the developmental events. 
The phenomena occurring during neural network development (cell duplication, 
differentiation, migration, axonal growth and synaptogenesis) are directly inspired 
by their real biological functioning (Purves & Lichtheim, 1985).  
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At the beginning of neural development the organism's neural system consists 
of a single egg cell with its own genome and a set of elements present in the 
intercellular environment. Some of these elements act as “receptors”  for 
extracellular signaling. Others are “structural”  elements for the activation and 
execution of developmental events. Others are pure “ regulatory”  elements for the 
modulation of gene expression, and do not play any direct role in development. 
The structural elements can regulate gene expression while the receptors cannot. 

The physical environment in which the egg cell will grow consists of a 2D 
grid of 7*20 cells. The grid has a polarized orientation in the y dimension. The 
upper pole corresponds to the organism’s muscle tissue side, and the lower pole to 
the sensory tissue side. The initial intracellular elements are considered to be 
inherited from the parent organism. Their distribution, i.e., the initial amount of 
each element, will function as the zygote's pattern formation mechanism. During 
development, the amount of these elements, together with the other environmental 
conditions, will determine the activation, inhibition or delay of developmental 
events. Moreover, these elements act also as regulators of gene expression. 

Five developmental events cyclically occur during the neural network’s 
growth: Cell duplication, Cell differentiation, Cell migration, Axonal growth, and 
Synaptogenesis. For example, the cell duplication process consists in the 
replacement of the mother cell with two new daughter cells. The physical 
displacement of the new cells, and their differentiation (i.e., the splitting of the 
mother cell's elements), is determined by the environment available around the 
mother cell and by the amount of the two elements responsible for mitosis. In this 
case, the choice of the two elements is inspired by the role played by cyclin and 
the kinase enzyme, two mayor regulatory proteins for mitosis (Marx, 1989). 

The feasibility of regulatory development for adaptation to environmental 
changes is the hypothesis tested using this model. A two-stage, two-task 
simulation setting was used. In the first evolutionary stage, the organisms are 
selected according to their performance in a foraging task. In the second stage, 
dangerous elements are introduced in the environment, together with food. This 
task requires that organisms adapt their food approaching strategy to a new 
behavioral pattern for approaching only foods and avoiding dangers. To do this, 
organisms need to restructure their neural network, for example by adding or 
readapting some sensory and hidden neurons to the new processing needs. The 
way to re-adapt the neural network is by modifying its architecture. 

Analysis of the distribution of neurogenetic changes that allow organisms to 
successfully re-adapt for the food and danger task shows that all five 
developmental events, except migration, are involved in re-adapting ontogenesis 
for coping with new behavioral requests. The events related to axon growth and 
synaptogenesis are the ones most frequently used as a re-adaptation strategy. Even 
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small adjustments of the connectivity pattern can prove very functional for the 
evolution of good networks.   

In the simulation different examples of heterochronic changes were observed. 
For example, a case of adaptive local Progenesis and contemporaneous cell-cell 
induction effect due to spatial interaction was observed. Few mutations in an 
offspring were enough to cause significant changes in its neural development and 
to allow the organism to adapt to the new environment. Figure 2 shows the 
morphogenetic tree of the ancestor and descendant organisms where such changes 
happened. The morphogenetic tree is a graphic representation of a cell duplication 
tree using the two dimensions of time and space. It facilitates the understanding of 
the developmental events, and their temporal and spatial interactions (Arthur, 
1984). In the ancestor organism, two sensory cells for food location input 
originate from a common founder cell. In the descendant individual, this cell stops 
duplicating early, leaving two free spots in the sensory area of the developing 
grid. This is a case of local Progenesis, because the offset of the mitotic sequence 
is anticipated. At the same time, there is a change in the cell displacement of other 
cell duplication branches. In the upper side of the developmental grid, two new 
cells, coming from a different mitosis branch, occupy the space left free in the 
sensory area. What happens in the descendant is that in later stages of 
development a newly formed cell changes position moving to the lower row. This 
new displacement will induce a dividing cell to place one of its daughters in the 
lower input area. Because of these spatial interactions, the progeny of this cell 
ends up in the two spots left free by the Progenesis.  
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Figure 2: Morphogenetic trees that show heterochronic changes in the 

development of a neural network (see text for explanation). From Cangelosi 1999. 
 

6. Evolution and Learning 
 

Evolution and learning are two forms of adaptation that operate on different time 
scales. Evolution is capable of capturing relatively slow environmental changes 
that might encompass several generations. Learning, instead, allows an individual 
to adapt to environmental changes that are unpredictable at the generational level. 
Moreover, while evolution operates on the genotype, learning affects the 
phenotype and phenotypic changes cannot directly modify the genotype. 
Recently, the study of artificial neural networks that are subjected to both an 
evolutionary and a lifetime learning process has received an increasing attention. 
These studies (see also Nolfi and Floreano, 1999) have been conducted with two 
different purposes: (a) looking at the advantages, in terms of performance, of 
combining two different adaptation techniques; (b) understanding the role of the 
interaction between learning and evolution in natural organisms. The general 
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picture that emerges from this body of research is that, within an evolutionary 
perspective, learning has several different adaptive functions: 
• It can help and guide evolution by channelling evolutionary search toward 

promising directions. For example, learning might significantly speed up the 
evolutionary search. 

• It can supplement evolution by allowing individuals to adapt to 
environmental changes that, by occurring during the lifetime of the individual 
or within few generations, cannot be tracked by evolution. 

• It can allow evolution to find more effective solutions and increase the ability 
to scale up to problems that involve large search space. 
However, learning also has costs and, in particular, it might increase the 

unreliability of evolved individuals (Mayley, 1997). Since an individual's abilities 
are determined by the individual's learning experiences, learning individuals 
might fail to acquire the required abilities in unfavorable conditions.  
 
6.1 How learning might help and 'guide'  evolution 
 
A simple and clear demonstration of how learning might influence evolution even 
if the characteristics that are learned are not communicated to the genotype was 
provided by Hinton and Nowlan (1987). The authors considered a simple case in 
which (a) the genotype of the evolving individuals consists of 20 genes that 
encode the architecture of the corresponding neural networks, and (b) only one 
architecture, i.e., only a single combination of gene values, confers added 
reproductive fitness. Individuals have a genotype with 20 genes that can assume 
two alternative values (0 or 1). The only combination of genes that provide a 
fitness value above 0 consists of all ones. In this extreme case, the probability of 
finding the good combination of genes would be very small given that the fitness 
surface looks like a flat area with a single spike in correspondence of the good 
combination. The fitness surface is a metaphor often used to visualize the search 
space on an evolutionary algorithm. Any point on the search space corresponds to 
one of the possible combinations of genetic traits and the height of each point on 
the fitness surface corresponds to the fitness of the individual with the 
corresponding genetic traits. In the fitness surface of Hinton and Nowlan's model, 
artificial evolution does not perform better than random search. Finding the right 
combination is like looking for a needle in a haystack.. 

The addition of learning simplifies evolutionary search significantly. One 
simple way to introduce learning is to assume that, in learning individuals, genes 
can have three alternative values [0, 1, and ?] where question marks indicate 
modifiable genes whose value is randomly selected within [0, 1] at each time step 
during an individual's lifetime. By comparing learning and non-learning 
individuals one can see that performance increases throughout generations much 
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faster in the former than in the latter. The addition of learning, in fact, produces an 
enlargement and a smoothing of the fitness surface area around the good 
combination that, in this case, can be discovered much more easily by the genetic 
algorithm. This is due to the fact that not only the right combination of alleles but 
also combinations which in part have the right alleles and in part have unspecified 
(learnable) alleles might report an average fitness greater than 0 (fitness 
monotonically increases with the number of fixed right values because the time 
needed to find the right combination is inversely proportional, on the average, to 
the number of learnable alleles). As claimed by the authors, “ it is like searching 
for a needle in a haystack when someone tells you when you are getting close”  
(Hinton and Nowlan, 1987, p. 496). (For a variation of this model that has been 
used to study the interaction between evolution, learning, and culture, see 
Hutchins and Hazlehurst (1991).) 

The Hinton-Nowlan model is an extremely simplified case that can be 
analyzed easily but that makes several unrealistic assumptions:  (1) there is no 
distinction between genotype and phenotype, (2) learning is modeled as a random 
process that does not have any directionality, and (3) there is no distinction 
between the learning task (i.e., the learning function that individuals try to 
maximize during their lifetime) and the evolutionary task (i.e., the selection 
criterion that identify the individuals that are allowed to reproduce). Further 
research conducted by Nolfi, Elman and Parisi (1994) showed how, when these 
limitations are released, learning and evolution display other forms of interactions 
that are also mutually beneficial.  

Nolfi, Elman and Parisi (1994) studied the case of artificial neural networks 
that 'live' in a grid world containing food elements. Networks evolve (to become 
fitter at one task) at the population level and learn (a different task) at the 
individual level. In particular, individuals are selected on the basis of the number 
of food elements that they are able to collect (evolutionary task) and try to predict 
the sensory consequences of their motor actions during their lifetime (learning 
task).  

The genotype of the evolving individuals encode the initial weights of a 
feedforward neural network that, each time step, receives sensory information 
from the environment (the angle and the distance of the nearest food element and 
the last planned motor action), determines a given motor action selected within 
four options (move forward, turn left, turn right or stay still) and predicts the next 
sensory state (i.e., the state of the sensors after the planned action will be 
executed).  Sensory information is used both as input and as teaching input for the 
output units encoding the predicted state of the sensors - the new sensory state is 
compared with the predicted state and the difference (error) is used to modify the 
connection weights through back-propagation. As in the case of the Hinton-
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Nowlan model, modifications due to learning are not transferred back into the 
genotype. 

The experimental results show that (a) after a few generations, by learning to 
predict individuals increase their performance during life not only with respect to 
their ability to predict but also with respect to their ability to find food, and (b) the 
ability to find food increases evolutionarily faster and achieves better results at the 
end of evolution in the case of learning populations than in the case of control 
populations in which individuals are not allowed to learn during lifetime. Further 
analyses demonstrate that result (a) can be explained by considering that 
evolution tends to select individuals that are located in regions of the search space 
where the learning and evolutionary tasks are dynamically correlated (i.e., where 
changes due to learning that produce an increase in performance with respect to 
the learning task also produce positive effects, on the average, with respect to the 
evolutionary task), and that result (b) can be explained by considering that, since 
learning tends to channel evolution toward solutions in which the learning task 
and the evolutionary task are dynamically correlated, learning allows individuals 
to recover from deleterious mutations (Nolfi, 1999). 

 

 
 

Figure 3. Fitness surface for the evolutionary task (finding food) and performance 
surface for the learning task (sensory prediction) for all possible weight matrices. 
Movement due to learning is represented as arrows. 
 

Consider for example two individuals, a and b, which are located in two 
distant locations in weight space but have the same fitness at birth, i.e., the two 
locations correspond to the same height on the fitness surface (see Figure 3). 
However, individual a is located in a region in which the fitness surface and the 
learning surface are dynamically correlated, i.e., a region in which movements 
that result in an increase in height with respect to the learning surface also cause, 
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on average, an increase with respect to the fitness surface. Individual b, on the 
other hand, is located in a region in which the two surfaces are not dynamically 
correlated. If individual b moves in weight space it will go up in the learning 
surface but not necessarily in the fitness surface. Because of learning, the two 
individuals will move during their lifetime in a direction that improves their 
learning performance, i.e., in a direction in which their height on the learning 
surface tends to increase. This implies that individual a, which is located in a 
dynamically correlated region, will end up with a higher fitness than individual b 
and, therefore, will have a better chance to be selected. The final result is that 
evolution will have a tendency to progressively select individuals which are 
located in dynamically correlated regions. In other words, learning forces 
evolution to select individuals which improve their performance with respect to 
both the learning and the evolutionary task.. 
 
6.2 Adapting to changing conditions on the fly 
 
As we claimed above, learning might complement evolution by providing a mean 
to master changes that occur too fast to be tracked by the evolutionary process. 
However, as we will see in this section, the combination of learning and evolution 
deeply alter both processes so that, in individuals that evolve and learn, adaptive 
characteristics emerge as the result of the interaction between evolutionary and 
lifetime adaptation and cannot be traced back to only one of the two processes. 

Nolfi and Parisi (1997), evolved neural controllers for a small mobile robot 
that was asked to explore an arena of 60 x 20 cm surrounded by walls. The robot 
was provided with 8 infrared sensors that could detect walls up to a distance of 
about 4 cm and two motors that controlled the two corresponding wheels. The 
colors of the walls switched from black to white and vice versa each generation. 
Given that the activity of the infrared sensors is highly affected by the color of the 
reflecting surface (white walls reflect more that black walls), to maximize their 
exploration behavior evolved robots should modify their behavior on the fly. In 
the environment with dark walls, in fact, robots should move very carefully when 
sensors are activated given that walls are detected only when they are very close. 
In the environment with white walls, on the contrary, robots should begin to avoid 
walls only when the sensors are strongly activated in order to explore also the area 
close to the walls.  

Individuals learn during their lifetime by means of a self-generated teaching 
signals. The genotype of the evolving individuals encodes the connection 
strengths of two neural modules: a teaching module that each time step receives 
the state of the sensors as input and produce a teaching signal as output, and an 
action module that receives the state of the sensors as input and produce motor 
actions as output. The self-generated teaching signal is used to modify the 
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connection strengths of the action module (for a similar architecture, see Ackley 
and Littman, 1991). This implies that not only the initial behavior produced by the 
evolving individuals but also what individuals learn is the result of the 
evolutionary process and is not determined by the experimenter. 

The results of the simulation show that evolved robots display an ability to 
discriminate the two types of environments and to modify their behavior 
accordingly, thus maximizing their exploration capability. An analysis of the 
obtained results reveals that this ability results from a complex interaction 
between the evolutionary and the learning process. For example, evolved 
individuals display an inherited ability to behave so as to enhance the perceived 
differences between the two environments. This in turns allows the learning 
process to progressively modify the behavior of the robots in such a way that they 
adapt to the different environmental conditions.  

More generally, this and other researches show that evolution, in the case of 
individuals that are able to change during life as a result of learning, do not tend 
to develop directly an ability to solve a problem but rather tend to develop a 
predisposition to acquire such ability through learning.  

Other experiments conducted by co-evolving two competing populations of 
predator and prey robots (Nolfi and Floreano, 1998) emphasized how lifetime 
learning might allow evolving individuals to achieve generality, i.e., the ability to 
produce effective behavior in a variety of different circumstances. Predators 
consist of small mobile robots provided with infrared sensors and a linear camera 
with a view angle of 36° with which they could detect the prey. Prey consist of 
mobile robots of the same size provided only with infrared sensors but that have a 
maximum available speed set to twice that of the predators. Each individual is 
tested against different competitors for 10 trials. Predators are scored with 1 point 
for each trial in which they were able to catch the prey while prey are scored with 
1 point for each trial they were able to escape predators.  

What is interesting about this experimental situation is that, since both 
populations change across generations, predators and prey are facing ever-
changing and potentially progressively more complex challenges. Interestingly, 
the authors observe that, in this situation, evolution alone displays severe 
limitations and progressively more effective solutions can be developed only by 
allowing evolving individuals to adapt on the fly through a form of lifetime 
learning. Indeed, any possible fixed strategy is able to master only a limited 
number of different types of competitors and therefore only by combining 
evolution and learning was it possible to synthesize individuals able to deal with 
competitors adopting qualitatively different strategies. Indeed, only by evolving 
learning individuals it was possible to observe the emergence of predators able to 
detect the current strategy adopted by the prey and to modify their behavior 
accordingly. 
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6.3 Evolving the Learning Rules 
 
Floreano and Urzelai (2000) conducted a set of experiments in which the 
genotype of the evolving individuals encoded the learning properties of the 
neurons of the corresponding neural network (see also Belew, McInerney, and 
Schraudolph, 1991). These properties included one of four possible hebbian 
learning rules, the learning rate, and the sign of all the incoming synapses of the 
corresponding neuron. When the genotype is decoded into a neural controller, the 
connection strengths are set to small random values. As reported by the authors, 
after some generations, the genetically specified configuration of learning rules 
tend to produce changes in the synaptic strengths that allow individuals to acquire 
the required competencies through lifetime learning. By comparing the results 
obtained with this method with a control experiment in which the strength of the 
synapses were directly encoded into the genotype, the authors observed that 
evolved controllers able to adapt during lifetime can solve certain tasks faster and 
better than standard non-adaptive controllers. Moreover, they demonstrated that 
their method scales up well to large neural architectures.  

The authors applied their method in order to evolve neural controllers for 
mobile robots. Interestingly, the analysis of the synaptic activity of the evolved 
controllers showed that several synapses did not reach a stable state but keep 
changing all the time. In particular, synapses continue to change even when the 
behavior of the robot became rather stable. 

Similar advantages has been reported by Husband et al. (1999) who evolved a 
type of neural network in which neurons, that were distributed over a 2D surface, 
emitted 'gases' that diffused through the network and modulated the transfer 
function of the neurons in a concentration-dependent fashion, thus providing a 
form of plasticity. Finally, in the experiments performed by Di Paolo (2000) it has 
been shown how learning can play the role of a homeostatic process whereby 
evolved neural networks adapt in order to remain stable in the presence of 
external perturbations. 

 
7. Discussion 

 
All changes that occur during the life of an individual organism, especially 

those that concern the organism's nervous system and the resulting behavior, are 
due both to the influence of the information contained in the organism's inherited 
genotype and to the influence of the individual's specific experience in the 
specific environment. When the first type of influences (genetic) are prevalent, 
one talks about maturation while learning is the term used when the second type 
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of influence (environmental) are predominant. When both are equally important 
the term most frequently used is development.  

Simulations using neural networks of the "classical" type (Rumelhart and 
McClelland, 1986) tend to concentrate on learning and to ignore the organisms' 
genotypes and the evolutionary process at the population level which results in 
those genotypes. This makes it difficult to study development using "classical" 
neural networks. Neural networks viewed in an Artificial Life perspective (Parisi, 
in press), on the contrary, are used in simulations in which what is simulated is 
not only the nervous system of organisms but also their body, environment, and 
genotype. Furthermore, the object of any particular simulation is not a single 
individual but a population of different individuals which reproduce selectively 
and evolve across of a succession of generations. In this framework it becomes 
possible to study neural development, i.e., the changes that occur in an individual 
organism's nervous system (neural network) during the individual's lifetime and 
that are due to both the individual's inherited (evolved) genotype and the 
individual's experience in the specific environment. 

In the past decade a number of simulations using neural networks have been 
conducted which have attempted to model how genetic information can be 
mapped in the organism's phenotype, how genetic information can determine 
changes in an individual's neural network and therefore in the individual's 
behavior, and how genetic information and information from the environment can 
interact in determining these lifetime changes. In many circumstances this 
interaction results in better, more rapid, more flexible adaptation of the organisms 
to the environment in which they happen to live. Therefore, these simulations 
shed some light on the question why learning has emerged as an evolutionary 
adaptation. 

Of course, like all simulations using neural networks these simulations 
greatly simplify everything, from the genetic encoding to the genotype-to-
phenotype mapping, from the genetically-based changes that occur in an 
individual's neural network during the individual's life to the role of learning in 
modulating and directing these changes. These simplifications are all the more 
regrettable given the steadly increasing corpus of new and detailed knowledge 
that research in "real" genetics and developmental biology is accumulating in 
these years. However, simulations using neural networks in an Artificial Life 
perspective can progressively incorporate new, altough always highly selected, 
knowledge generated by the "real" sciences and in any case they can play a useful 
role for testing in detailed and controllable ways ideas on general and specific 
mechanisms underlying neural and behavioral development in organisms.  
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