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Abstract

Co-evolution of competitive species provides an
interesting testbed to study the role of adap-
tive behavior because it provides unpredictable
and dynamic environments. In this paper we ex-
perimentally investigate some arguments for the
co-evolution of di�erent adaptive protean behav-
iors in competing species of predators and preys.
Both species are implemented as simulated mo-
bile robots (Kheperas) with infrared proximity
sensors, but the predator has an additional vi-
sion module whereas the prey has a maximum
speed set to twice that of the predator. Di�erent
types of variability during life for neurocontrollers
with the same architecture and genetic length are
compared. It is shown that simple forms of pro-
teanism a�ect co-evolutionary dynamics and that
preys rather exploit noisy controllers to gener-
ate random trajectories, whereas predators bene-
�t from directional-change controllers to improve
pursuit behavior.

1 Introduction

Adaptive behavior {as compared to innate and �xed
behavior{ might represent an advantage in unpredictable
and dynamic environments. In this respect, co-evolution
of competitive species provides an interesting testbed to
study the role of adaptive behavior. In the simplest sce-
nario of two competing species, such as a predator and a
prey, the behavior of each individual is tightly related to
the behavior of the competitor both on the evolutionary
and on the ontogenetic time scale. On the evolutionary
time scale, the coupled dynamics of the system give rise
to the \Red Queen e�ect" whereby the �tness landscape
of each population is continuously modi�ed by the com-
peting population [3]. Given the ubiquity of co-evolution
in nature, the relative lack of bio-historical evidence for
its role in adaptive progress, and the strong assumptions
underlying simplemathematicalmodels developed so far,
Arti�cial Life techniques, such as computer simulations

of arti�cial evolution, are a suitable method to study this
phenomenon [1].

On the ontogenetic time-scale, it has been argued that
pursuit-evasion contests might favor the emergence of
\protean behaviors", that is behaviors which are adap-
tively unpredictable [4]. For example, preys could take
advantage of unpredictable escape behaviors based on
short sequences of stochastic motor actions. Similarly,
predators could take advantage of enhanced percep-
tual characteristics and/or adaptive sensory-motor in-
telligence which could enable predictive tracking strate-
gies. Miller and Cli� provided an excellent review of
the biological signi�cance of pursuit-evasion contests and
several arguments for its relevance in the study of pro-
tean adaptive behavior [11]. Recently, they also de-
scribed initial results from computer simulations of ar-
ti�cial co-evolution of competing agents controlled by
continuous-time recurrent neural networks [2], and de-
veloped a set of techniques for analyzing and assessing
adaptive progress of both populations [1]. Arti�cial co-
evolution of competitive species has been studied also
by other researchers using similar methods, such as Ray's
\Tierra" system [13], Sim's creatures [15], and Reynolds'
pursuer-evader systems [14]. In very recent work, which
will be brie
y summarized below, we have investigated
the potentiality of the Red Queen e�ect for evolutionary
robotics, and showed that, with a suitable combination
of realistic simulations and measuring techniques, com-
petitive co-evolution can develop a variety of e�cient
behaviors without e�ort in �tness design [7].

However, none of these experimental researches sys-
tematically explored the role of ontogenetic adaptive be-
havior in co-evolution of competing species. Although
most of the evolved systems include some form of noise,
it is di�cult to say whether this plays an important role
on the speci�c dynamics of co-evolving species or it is
simply exploited for smoothing the �tness landscape. In
general, all the results presented so far are based on
single-run studies and do not include comparisons be-
tween di�erent adaptation techniques.

The aim of this paper is that of presenting initial re-
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Figure 1: Right: The Predator is equipped with the vi-
sion module (1D-array of photo-receptors, visual angle
of 36�). Left: The Prey has a black protuberance which
can be detected by the predator everywhere in the en-
vironment, but its maximum speed is twice that of the
predator. Both Predator and Prey are equipped with 8
Infrared proximity sensors (max detection range was 3
cm in our environment). Evolutionary runs have been
conducted in simulation.

sults on the e�ect of adaptive protean behavior in co-
evolving competing species. In particular, we want to
address the following questions: Does protean behavior
a�ect evolutionary dynamics? Do competing species ex-
ploit di�erent types of protean strategies, and how does
this a�ect the competitor's behavior? In the attempt to
investigate these issues in very simple settings, we have
compared co-evolution of competing species equipped
with di�erent types of simple adaptive controllers with
results from previous experiments where the controllers
were genetically determined [7].

2 Method

As often happens in nature, predators and preys belong
to di�erent species with di�erent sensory and motor char-
acteristics. Thus, we employed two Khepera robots, one
of which (the Predator) was equipped with a vision mod-
ule while the other (the Prey) had a maximum available
speed set to twice that of the predator (Figure 1). Both
individuals were also provided with eight infrared prox-
imity sensors (six on the front side and two on the back)
which had a maximumdetection range of 3 cm in our en-
vironment. The two species evolved in a square arena of
size 47 x 47 cm with high white walls so that the preda-
tor could always see the prey (if within the visual angle)
as a black spot on a white background.
Since co-evolutionary experiments with real robots

would require two separate cables for powering the units
for several hours, ad hoc solutions must be devised to
avoid that the cables twist on each other. Instead of
building additional hardware, we have resorted to real-
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Figure 2: Left and center: Details of simulation of
vision, of neural network architecture, and of genetic en-
coding. The prey di�ers from the predator in that it does
not have 5 input units for vision. Each synapse in the
network is coded by �ve bits, the �rst bit determining
the sign of the synapse and the remaining four the other
synaptic parameters. Right: Initial starting position for
Prey (left, empty disk with small opening corresponding
to frontal direction) and Predator (right, black disk with
line corresponding to frontal direction) in the arena. For
each competition, the initial orientation is random.

istic computer simulations of the two Kheperas. It has
been shown elsewhere that for geometrically-simple envi-
ronments one can have small discrepancies between be-
haviors in simulation and on the real robot by sampling
sensor activity at di�erent distances and angles of the
robot from the objects of the world (see [10] for details).
We have thus employed this methodology and sampled
infrared sensor activity of each robot in front of a wall
and in front of another robot. These values were then
separately stored away and accessed through a look-up
table depending on the faced object.

Simulation of the visual input required di�erent con-
siderations. The vision module K213 of Khepera is an
additional turret which can be plugged-in directly on top
of the basic platform. It consists of a 1D-array of 64
photo-receptors which provide a linear image composed
of 64 pixel of 256 gray-levels each, sub-tending a view-
angle of 36�. The optics are designed to bring into fo-
cus objects situated at distances between 5cm and 50cm
while an additional sensor of light intensity automati-
cally adapts the scanning speed of the chip to keep the
image stable and exploit at best the sensitivity of re-
ceptors under a large variety of illumination intensities.
The K213 vision turret incorporates a private 68HC11
processor which is used for optional low-level process-
ing of the scanned image before passing it to the robot
controller. One of these options is position detection of
the pixel with minimal activation in the image which
in this case corresponds to the position of the prey in
the visual �eld. Therefore, instead of simulating the re-
sponse of the 1D-array of receptors resorting to complex



and time-consuming ray-tracing techniques, we exploited
the built-in facility for position detection of pixel with
minimal intensity, and divided the visual angle in �ve
sectors corresponding to �ve simulated photo-receptors
(Figure 2, left). If the pixel with minimal intensity was
within the �rst sector, then the �rst simulated photo-
receptor would become active, if the pixel was within
the second sector, then the second photo-receptor would
become active, etc. We made sure in a set of prelimi-
nary measurements that this type of input reduction was
largely su�cient to reliably capture and represent all the
relevant visual information available to the predator.

Displacement of the robots was computed by passing
to the simulator a vector of wheel velocities (positive and
negative values standing for rotation in di�erent direc-
tions) and calculating the new x; y position using a set
of simple trigonometric equations which gave a maxi-
mum estimation error of 0:008mm for the predator and
0:016mm for the prey, absolutely negligible values with
respect to the sensor characteristics (for more details, see
[7]).

In line with some of our previous work (e.g., [5]), the
robot controller was a simple perceptron of two sigmoid
units with recurrent connections at the output layer.
The activation of each output unit was used to up-
date the speed value of the corresponding wheel every
100ms. In the case of the predator, each output unit
received connections from �ve photo-receptors and from
eight infrared proximity sensors (Figure 2, center); in
the case of the prey, each output unit received input
only from 8 infrared proximity sensors, but its activa-
tion value was multiplied by 2 before setting the wheel
speed. This structure, which is well-suited for evolution
of Braitenberg-like obstacle avoidance, was chosen for
being a minimally su�cient architecture to evolve some-
thing interesting while maintaining system complexity
at a manageable level; for the same reason, the architec-
ture was kept �xed, and only synaptic parameters were
evolved.

In order to keep things as simple as possible and given
the small size of the parameter set, we used direct ge-
netic encoding [16]: each parameter (including recurrent
connections and threshold values of output units) was
encoded on �ve bits, the �rst bit determining the sign of
the synapse and the remaining four bits di�erent char-
acteristics of the synapses, depending on the controller
type under investigation. Therefore, the genotype of the
predator was 5 x (30 synapses + 2 thresholds) bits long
while that of the prey was 5 x (20 synapses + 2 thresh-
olds) bits long. Two populations of 100 individuals each
were co-evolved for 100 generations. Each individual was
tested against the best competitors of the ten previous
generations (a similar procedure was used in [15, 14, 1])
in order to improve co-evolutionary stability. For each
competition, the prey and predator were always posi-

Bits for one synapse
Condition 1 2 3 4 5

1 sign strength
2 sign strength noise
3 sign Hebb rule rate

Table 1: Genetic encoding of synaptic parameters
for each co-evolutionary condition. 1: Genetically-
determined controllers; 2: Adaptive-noise controllers; 3:
Directional-change controllers.

tioned on a horizontal line in the middle of the envi-
ronment at a distance corresponding to half the envi-
ronment width (Figure 2, right), but always at a new
random orientation. The competition ended either when
the predator touched the prey or after 500 motor up-
dates (corresponding to 50 seconds at maximum on the
real robot).
The �tness function �c for each tournament did not

require complex and/or global measures; it was sim-
ply TimetoContact normalized by the maximum num-
ber of motor updates (500) T tC for the predator pr,
and 1 � T tC for the prey py, further averaged over the
number of tournaments (10). Therefore the �tness val-
ues were always between 0 and 1, where 0 means worst.
Individuals were ranked after �tness performance in de-
scending order and the best 20 were allowed to repro-
duce. One-point crossover was applied on all randomly
paired strings with constant probability pc = 0:1, and
random mutation (bit switching) was applied to each bit
with constant probability pm = 0:05.1.

2.1 Protean controllers

Being the de�nition of protean behavior only qualita-
tive in the literature, we decided to provide the organ-
isms with \protean controllers", that is neural networks
which could potentially display forms of adaptive unpre-
dictability or directional change and compare them with
neural networks whose behavior was �xed and genetically
evolved. For sake of comparison, all the neural networks
had the same architecture, the same genotype length (5
bits per synapse), and used a comparable encoding tech-
nique. Here we describe three evolutionary conditions,
each one corresponding to a di�erent controller type (Ta-
ble 1). In all conditions, the �rst bit of each synapse
coded its sign (whether excitatory or inhibitory).
In the �rst condition, the remaining four bits coded

the synaptic strength as a value in the range [0; 1]: since
no changes take place during the life of the individuals,

1In preliminary experiments, we compared various evolution-
ary runs with di�erent pc, and a less severe selection scheme (50
parents out of 100 individuals), but none of these changes a�ected
evolutionary dynamics and outcomes.



let us call them genetically-determined controllers.

In the second condition, only two bits coded the synap-
tic strength (again, in the range [0; 1]), and the remaining
two bits coded the level of random noise applied to the
synaptic value. Each level corresponded to the lower and
upper bounds of a uniform noise distribution: 0:0 (no
noise), �0:337, �0:667, and �1:0. At every network ac-
tivation, each synapse had its own newly-computed noise
value added to its strength (with a �nal check to level out
sums below 0.0 or above 1.0). We shall call this condi-
tion adaptive-noise controllers because each species can
evolve the most appropriate noise level for each synapse.
In the third condition, two bits coded four hebbian

rules and the remaining two bits the learning rate (0:0,
0:337, 0:667, and 1:0). Four variations of the Hebb
rule were used: \pure Hebb" whereby the synaptic
strength can only increase when both presynaptic and
postsynaptic units are active, \presynaptic" whereby the
synapse changes only when the presynaptic unit is ac-
tive (strengthened when the postsynaptic unit is active,
and weakened when the postsynaptic unit is inactive),
\postsynaptic" whereby the synapse changes only when
the postsynaptic unit is active (strengthened when the
presynaptic unit is active, and weakened when the presy-
naptic unit is inactive), and \covariance" whereby the
synapse is strengthened if the di�erence between pre-
and post-synaptic activations is smaller than a threshold
(half the activation level, that is 0.5) and is weakened
if the di�erence is larger than such threshold. After de-
coding a genotype into the corresponding controller, each
synapse was randomly initialised to a value in the range
[0; 1] and modi�ed at each time step according to the cor-
responding hebbian rule and learning rate. In a previous
paper, we have shown that this evolutionary scheme in a
single-agent static environment can develop stable con-
trollers which quickly develop navigation strategies start-
ing from small random synaptic strengths [6]; interested
readers will �nd more details in that paper. Flotzinger
has recently replicated those results and studied in more
detail the synaptic dynamics, showing that the continu-
ously changing synaptic values re
ect (to a certain ap-
proximation) input and output values of the network [8].
Therefore, let us call this condition directional-change

controllers, simply indicating that synaptic changes de-
pend on sensory activation and motor actions.

3 Results

For each condition, 6 di�erent evolutionary runs were
performed, each starting with a di�erent seed for ini-
tializing the computer random functions. A set of pair-
wise two-tail t-tests of the average �tness and best �tness
along generations among all the six runs, performed to
check whether di�erent seeds signi�cantly a�ected the
experimental outcomes, gave negative results at signif-
icance level 0.05. Therefore, for each condition below,

we shall plot only data referring to seed 1 (arbitrarily
chosen), but the statistical tests reported will be based
on all the runs. Each run was carried out separately
on a Sun SparcStation 20, lasting approximately 8 to 10
hours (time varied depending on the di�erent controllers
and on the performance of the competitors). For the
�rst condition, we brie
y summarize the basic results
already described in a recent paper where we also pre-
sented additional analyses and considerations for robotic
applications [7].

As we shall see below, the changing �tness landscape
due to the \Red Queen e�ect" demands novel measuring
techniques to monitor the dynamics of co-evolutionary
systems. For example, a stationary �tness value over
several generations could hide to the observer a set of
coupled and rapid changes in both populations. There-
fore, for all conditions we show the average �tness of the
two competing species along with two types of analysis
developed by Cli� and Miller to measure progress in co-
evolutionary competitive systems [1]. The �rst, which
they dubbed \CIAO data" (Current Individual vs. An-
cestral Opponents), shows the performance of the best
individuals of each generation against the best competing
ancestors; in applying this technique to our populations
after co-evolutionary training, we test each individual
ten times (that is ten di�erent individual tournaments)
against each best competing ancestor, and plot the av-
erage �tness as darker squares for higher values. The
second, which they dubbed \Ancestral Hamming Map-
s", shows the normalized Hamming distance between the
genotypes of best individuals along generations (darker
squares for higher distance). Both these measures reveal
some of the underlying dynamics, such as continuous or
instantaneous progress, genetic change, cycling through
strategies, etc.

3.1 Genetically-determined controllers

When both controllers were genetically determined, a set
of oscillations in �tness values emerged after an initial
short period (�gure 3, left center), as in [15, p. 36]. The
onset and amplitude of these oscillations varied across
di�erent seeds, but the general pattern was always the
same and it kept repeating for several hundred genera-
tions, as we could observe in a continuation of this run
up to 500 generations (data not shown). However, con-
tinuing a run for more than one hundred generations
does not reveal anything new with respect to the analy-
ses reported below. We never observed dominance of one
species over the other in any of the evolutionary runs, al-
though the preys tended to display higher peaks due to
the initial position advantage.

A relational measure of performance gives us addi-
tional information on the coupled dynamics of such a
co-evolved system: for example, one can derive an index
of relative performance rc

i
by counting how often one
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Figure 3: Genetically-determined controllers. Left, cen-
ter: Average �tness across generations for predator (pr)
and prey (py). Left, top and bottom: Ancestral Ham-
ming Maps for predator and prey, respectively: see sec-
tion 3 for explanation. Right, top and bottom: CIAO
graphs for predator and prey. respectively: see section 3
for explanation.

species reports higher �tness than the competing species
at each generation for each separate run i in a speci�c
condition c. In our co-evolutionary runs which lasted 100
generations, such index will be in the range [�100; 100],
where �100 means that the preys always outperformed
the predators, 0 means that both species were equally
better or worse than the competitors, and 100 means
that the predators always outperformed the preys. In
this condition (c = 1), the average value over di�erent
runs is R1 = 16:67 with standard deviation of the sample
mean � = 38, indicating that both species reported simi-
lar performances. The development of a better strategies
by one of the species corresponded to a decrement in per-
formance of the competing species.

Major changes in behavioral strategies are re
ected by
the genotype of the best individuals selected for repro-
duction. The Ancestral Hamming Maps reported on top
and bottom left of �gure 3 show how each individual
di�ers from the other individuals of its own population.
The white diagonal line (Hamming distance zero) is the
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Figure 4: Behaviors of genetically-determined con-

trollers. Black disk is predator, white is prey. Top.
Generation 20: The predator has developed good visual
tracking strategies. The prey is a wall-follower with ob-
stacle avoidance. Center. Generation 70: The prey
turns on place quickly backing whenever the predator
attacks. Bottom. Generation 90. The predator devel-
ops a \spider-strategy" slowly backing against a wall and
waiting for the fast-approaching prey.

identity comparison. Small white areas, which indicate
almost identical genotypes, correspond to periods of sim-
ilar �tness in the performance graph. Since these areas
appear in the neighborhood of the matrix diagonal, only
best individuals which are close in evolutionary time have
similar genotypes. It also means that individuals that
report similar �tness, but are distant in time, do not
have the same genotype. Small dark lines between white
zones indicate an abrupt change of behavioral strategy,
whereas a gradual fading of white into gray indicates
gradual genetic change (which is quite rare here).

Whether genetic change implies real progress (that is
increasingly more complex and e�cient pursuit and eva-
sion strategies) or not, is revealed by the CIAO graphs
displayed on top and bottom right of �gure 3. These



graphs show that individuals in later generations do not
necessarily score well against competitors of much earlier
generations. For example, best predators around gener-
ation 90 can hardly catch best preys of generations 0-
10, 35-50, and 70-80, despite the fact that the average
population �tness is relatively high. This indicates that
around generation 90 the predators developed a behav-
ioral strategy tuned to their preceding ten best competi-
tors (during co-evolutionary training, each individual is
tested against the best competitors of the preceding ten
generations). By carefully comparing the �tness graphs
with the CIAO graphs, one can �nd several indications
for the development of behavioral strategies speci�cally
tuned to competitors' behaviors. Another case is shown
by the performance of the best preys in the �nal gen-
erations which is quite high in the instantaneous �t-
ness graph, but does not compare so well in the CIAO
graphs when the competitors are taken frommuch earlier
generations. Finally, the the Scottish tartan pattern of
the CIAO graphs, together with the Ancestral Hamming
Maps, indicate periods of relative stasis and fast evolu-
tionary changes in both species (a method for picking
out best individuals of each species for e�ciency and/or
fun purposes has been indicated in a previous paper [7]).
Figure 4 shows some behaviors recorded at interesting

points of evolution. At generation 20 we already have
challenging tournaments for both species. The prey has
developed a good wall-following and obstacle-avoidance
behavior, and the predator displays good pursuit strate-
gies. Later, at generation 70, the prey turns in place un-
til it perceives the approaching predator; it then quickly
backs (faster than the predator) and starts again rotat-
ing. Anytime the prey escapes, the predator performs
a half turn on one wheel and re-attacks. The prey is
caught when, by chance, the predator attacks it on the
side with the motor (where there are no infrared sen-
sors). Finally, at generation 90 the prey has resumed a
very fast wall-following strategy. Since high speed com-
bined with a short-range sensor resolution for the prey2

is such that it cannot avoid an incoming predator, the
predator adopts a spider-strategy: it slowly backs to-
wards a wall and there it waits for the fast-approaching
prey. However, this predator strategy does not pay o�
for all the other prey strategies described before, as it
can also be seen by the CIAO graph of �gure 3.

3.2 Adaptive-noise controllers

The condition with evolutionary adaptive noise (c = 2)
displayed an average relative performance R2 = 11:66
with standard deviation of the sample mean � = 32:5
which was not statistically di�erent from that of the con-
dition of genetically-determined controllers (probability

2IR-sensor activity is smaller when the robot faces a small dark
object like another Khepera than when it faces a large bright sur-
face like the walls

value was 0.83 for t-test of the di�erence of the means
between the two conditions, i.e. much bigger than signif-
icance level 0.05 typically used for rejecting the equality
hypothesis). However, in all runs predator and prey per-
formance did not display the high oscillations observed
in condition 1 (except for one run with a small counter-
phase oscillation in both populations around generation
80); rather, both species displayed similar �tness values,
or either the prey or the predator was slightly better than
the other, as shown in the center left of �gure 5. Fur-
thermore, in all cases the �tness value of the two species
required roughly twice the number of initial generations
{as compared to condition 1{ to reach the intersection
point (20 against 10) which marks the establishment of
challenging pursuit-evasion tournaments.
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Figure 5: Adaptive-noise controllers. Left, center: Av-
erage �tness across generations for predator (pr) and
prey (py). Left, top and bottom: Ancestral Ham-
ming Maps for predator and prey, respectively: see sec-
tion 3 for explanation. Right, top and bottom: CIAO
graphs for predator and prey, respectively: see section 3
for explanation.

The CIAO graphs revealed a smooth grey texture indi-
cating almost equal performance for all tournaments, ex-
cept for the initial generations. In some runs the preda-
tor was slightly better (darker grey patterns), in others
the prey was. In any case, these data showed that both
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Figure 6: Behaviors of adaptive-noise controllers. Black
disk is predator, white is prey. Top. Generation 20.
Center. Generation 50. Bottom. Generation 80.

species employed behavioral strategies that were compa-
rably challenging for the competitor. However, the fact
that small patterns of change in the CIAO graphs were
always perpendicular to the predator axis (both for the
predator and the prey CIAO data) implied that perfor-
mance changes were due to a behavioral change in the
predator only. This could be also seen from the Ances-
tral Hamming Maps of �gure 5. Here, the slow variation
in �tness values during the �rst 20 generations is ac-
companied by a corresponding pattern of change in the
genotype of the predator only. On the other hand, the
genotype of the prey displays roughly the same amount
of change along generations.

The hypothesis that the prey exploited noise to de-
velop unpredictable controllers (that is, not improving
much on initial random controllers) while the predator
tried to develop more stable pursuit strategies was con-
�rmed by the analysis of noise levels in the two species
across generations. Similarly to what was done for the
the �tness values, we compared at each generation popu-
lation noise values and noise values of the best individual

between the two species. In all runs, the preys reported
higher noise values than the predators, except for one
run where the noise levels were roughly equal (the same
run where the oscillation was observed). Two separate
t-tests for checking di�erences in average noise level and
in noise level of the best individuals for all evolutionary
runs both displayed a signi�cant di�erence (p� 0:1).
A qualitative analysis of behavioral patterns showed

unpredictable manoeuvres for the prey and a not-so-
smooth target-oriented navigation for the predator (�g-
ure 6). There were no detectable changes after gener-
ation 20. In all cases, the prey's trajectory was often
changing while retaining su�cient obstacle-avoidance
abilities (it sometimes stopped near a wall for a few in-
stants and later moved away). The predator's behaviours
were more predictable. In general, it was quite good at
keeping the prey within the visual �eld, but its actions
were not precise.

3.3 Directional-change controllers

Relative performance of the two species in this condition
signi�cantly di�ered from condition 1 (and also from con-
dition 2), R3 = 72 with standard deviation of the sample
mean � = 15:39, p < 0:01 for a two-tailed t-test of the
di�erence of the means. In all the six evolutionary runs
predators reported higher average and best �tness val-
ues than preys, except for short temporary oscillations
(�gure 7). Furthermore, in all runs, the average �tness
of the predator population was more stable than that of
the preys.
Although CIAO graphs revealed the presence of be-

havioral strategies speci�cally tuned to the behavior of
the competitor, such as at generation 90 for the preda-
tor in the run plotted here in �gure 7, this pattern was
less marked than in condition 1. All CIAO graphs for
all runs consistently displayed higher performance of the
predator (darker grey levels). Ancestral Hamming Maps
were not qualitatively di�erent from previous conditions,
except for a higher genetic variation between temporally
adjacent generations.
More information can be gained by observing behav-

ioral patterns of the two competitors during individual
tournaments (�gure 8). There is not much variation in
the behavior of the predator. It always displays a very
good tracking ability across generations: once the prey
has been locked in its visual �eld, it quickly accelerates
to maximumspeed until contact. As a matter of fact, for
the predator it is su�cient to get the sign of the synapses
right. Then, independently of their initial random val-
ues, the synapses from active sensors will be increased
causing an acceleration in the right direction. As com-
pared to condition 1, where the predator tended to ef-
�ciently track in only one direction, here it can turn in
both directions at equal speed. In condition 1 proper
tracking in both directions would have required accu-
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Figure 7: Directional-change controllers. Left, center:
Average �tness across generations for predator (pr) and
prey (py). Left, top and bottom: Ancestral Ham-
ming Maps for predator and prey, respectively: see sec-
tion 3 for explanation. Right, top and bottom: CIAO
graphs for predator and prey. respectively: see section 3
for explanation.

rate settings of all synaptic strengths from visual inputs.
Here, instead, since synapses are temporarily increased
depending on active units [6, 8], individual adjustments
of synapses take place when and where required depend-
ing on current sensory input. The trajectory in the cen-
ter image of �gure 8 shows another example of synaptic
adjustment. Here, while the prey rotates always around
the same circle, the predator performs three turns during
which synaptic values from the visual units are gradually
increased; at the fourth turn, the synaptic values will be
su�ciently high to cause a straight pursuit (eventually,
the prey will try to avoid the predator without success).
Finally, the temporary drop in performance of the preda-
tor after generation 90 is due a more precise tracking
combined with a slower motion (bottom image of �g-
ure 8). Such behavior was probably developed because
the preys were also slower and more careful in avoiding
obstacles (including the predator).

Although activity-dependent synaptic change are ex-
ploited by the far-sighted predator, not the same happens

behaviorslearning.eps
37 � 113 mm

Figure 8: Behaviors of directional-change controllers.
Black disk is predator, white is prey. Top. Generation
20. Center. Generation 70. Bottom. Generation 95.

for the prey. Preys are faster than in condition 1 and 2,
especially when turning near walls (where IR sensors be-
come active and synapses temporarily strengthen), but
they cannot increase their behavioral repertoire with re-
spect to condition 1. Not even can they improve it be-
cause volatile changes of the synaptic values imply that
most of the time they must re-develop on-the-
y ap-
propriate strengths; although this can be well-suited for
avoidance of static obstacles, it does not represent an ad-
vantage when facing another moving object such as the
predator.

4 Discussion

Introducing protean controllers in co-evolutionary com-
petition signi�cantly a�ected various aspects of the sys-
tem dynamics, both on the evolutionary and on the onto-
genetic time-scale. On the evolutionary time-scale, noisy
controllers (c = 2) caused a relaxation of the tightly
coupled dynamics observed in the benchmark condition
(c = 1). High behavioral variation during life of the
competitors, especially in the case of preys, was such



that only a su�ciently general behavioral strategy could
pay o�, both for the predator and for the prey. Co-
evolutionary search here had higher probability of select-
ing individuals located in better zones of the �tness land-
scape, a well-known phenomenon in single-agent evo-
lutionary systems with local variability [9, 12] Instan-
taneous �tness values re
ected more closely behavioral
progress, as in traditional single-agent static environ-
ments. On the other hand. directional-change con-
trollers (c = 3) clearly favored dominance of one species {
the predator{ whose sensory-motor system pro�ted most
of non-random changes of synaptic values.

On the ontogenetic time scale, that is at the level of
individual tournaments, the two species di�erentially ex-
ploited the two types of protean controllers. In condi-
tion 2, both species reported similar performances, but
they di�erently exploited adaptive noise: preys employed
higher noise levels to generate unpredictable and hard-to-
track trajectories, whereas predators reduced noise level
to maintain su�cient pursuit strategies. In condition
3, predators seemed to bene�t from directional synaptic
change to improve their pursuit abilities with respect to
condition 1.

In order to check whether predators' superior perfor-
mances in condition 3 were due to a real advantage of the
predator rather than to some di�culties of the preys to
cope with directional-change controllers, we performed
two Master Tournaments. In a Master Tournament each
individual is tested against each best competitor of all
generations (see [7] for more details) and the resulting
average �tness (in this case, over 100 tournaments) of
each individual across generations is called Master �t-
ness. The graph on the left of �gure 9 shows the Master
�tness for predators and preys co-evolved in condition
1 (run 1 displayed in �gure 3), giving a relative perfor-
mance R = �12 (relative performance for the average

�tness data of this run was r11 = �4). The graph on
the right of �gure 9 instead shows the Master �tness
for predators evolved in condition 3 (run 1 displayed in
�gure 7) against preys evolved in condition 1, giving a
relative performance R = 42 (relative performance for

the average �tness data of this run was r31 = 50). Had
the advantage reported in section 3.3 been caused by
underdeveloped preys rather than better predators, the
Master Tournament between species evolved in di�erent
conditions should have generated opposite results.

5 Conclusion

The results reported in this paper provide initial exper-
imental support to the arguments given in section 1 for
the di�erential exploitation of protean behaviors in dif-
ferent co-evolving and competing species [11]. However,
one should be careful before generalizing too much these
results. Firstly, di�erential exploitation of sources of con-
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Figure 9: Master Tournament between species evolved
in condition 1 (left) and Master Tournament between
predator evolved in condition 3 and prey evolved in con-
dition 1 (right).

troller variability here heavily depended on the sensory-
motor systems of our species which were assumed to be
di�erent and unmodi�able. Secondly, the controller ar-
chitecture could have been a limiting factor, being a sim-
ple perceptron with discrete-time dynamics: this might
be a reason why in these experiments we had no evidence
for the development of predictive behavioral strategies
during life of each individual. Thirdly, the type of con-
troller variability that we employed in these experiments
was quite arbitrary, although speci�cally chosen to ad-
dress the issue of random strategies against goal-directed
strategies. It would be necessary to carry out further
tests with di�erent types of controller adaptation. Addi-
tionally, while still keeping the types of controllers em-
ployed in condition 2 and 3, it would be interesting to
let each species evolve the most suitable controller among
the two; for example, one could introduce an extra gene
for each individual which speci�es how the genotype
should be decoded and observe whether there is a signif-
icant choice of type 2 for preys and type 3 for predators.
Finally, we think that competing co-evolutionary sys-

tems are an interesting testbed to study also other as-
pects of arti�cial evolution. One of these is genetic en-
coding, which here was deliberately kept as simple as
possible. However, for co-evolution between di�erent
species to be a powerful engine of evolutionary progress,
it would be advisable to employ a genetic encoding which
takes better care of achieved progress, for example as in
the work by Cli� and Miller [1].
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