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In this paper we will present the result of a set of experiments in which an robotic arm 
with a two-fingered hand is evolved for the ability to grasp objects.  Obtained results are 
encouraging  and  demonstrate  that  evolutionary  robotics  techniques  might  scale  up  to 
situations involving robots with several degrees of freedom and problems that require an 
ability to produce sequential behaviours.

1. Introduction

In  this  paper  we will  present  the  result  of  a  set  of  experiments  in  which  a 
robotic arm with a two-fingered hand is evolved for the ability to grasp objects 
(for a previous related model, see Bianco and Nolfi, 2004; for other models in 
which controllers for robotic arms have been developed through evolutionary 
techniques, see Moriarty and Mikkulainen, 1996; Skopelitis, 2002; Buehrmann 
and  Di  Paolo,  2004).  Preliminary  results  demonstrate  that  the  problem  of 
grasping  objects  in  varying  environmental  conditions  can  be  solved  by 
producing rather simple forms of behaviour. These forms of behaviour exploit 
properties  emerging  from the  interaction between the  body of  the  robot,  its 
control system and the environment. Evolved neural controllers, however, are 
not able to master cases in which the position of the objects to be grasped vary 
significantly. In the following sections we briefly describe: the model and the 
experimental setup, the obtained results, and the future research directions.

2. Model and Experimental Setup

2.1. The Robotic Arm

The  simulated  robot  consists  of  various  objects  articulated  by  joints  as 
illustrated  in  Figure  1.  The  arm  consists  of  three  segments  (the  arm,  the 
forearm, and the wrist, respectively) that are attached to the previous segments 
(the shoulder, the arm, and the forearm, respectively) through three joints. Each 
joint has two degrees of freedom (DOF). The hand consists of two fingers (a 



thumb and an index finger) attached to the wrist with two corresponding joints 
with one DOF. The index finger also includes an additional segment attached to 
the  previous  segment  with  a  joint  with  one  DOF. Therefore  the  whole  arm 
consists of six motorized joints and six segments with 9 DOF.

To  model  the  physical  dynamics  as  accurately  as  possible,  we  used  a 
library for simulating rigid body dynamics called ODE (Open Dynamics Engine 
www.ode.org). 

Figure 1. The robotic arm.

2.2. The Neural Controller

The neural controller consists of a recurrent neural network with 33 sensory 
neurons,  2  internal  neurons,  and  9  motor  neurons.  Sensory  neurons  are 
connected to the internal and motor neurons. Internal neurons are connected to 
themselves and to the motor neurons. The sensory neurons encode: the current 
angular position of the joints controlling the 9 DOF (9 neurons), the state of 16 
contact sensors placed on the fingers and on the forearm (16 neurons), and the 
current  relative  position  of  the  target  object  with  respect  to  the  hand  (8 
neurons).  The 9 motor  neurons control  the  actuators  of  the 9 corresponding 
joints. The output of the neurons is normalized within the range of movement of 
the  corresponding  joint  and  is  used  to  set  the  desired  position  of  the 
corresponding joint. More precisely, motors are activated so as to reach a speed 
proportional to the difference between the current and the desired position of 
the joint.

2.3. Genetic Algorithm

The neural controllers have been evolved (Nolfi and Floreano, 2000) for the 
ability to grasp objects placed on a planar surface.

The genotype of evolving individuals encodes  the connections’ weights 
and the biases of the neural controller. Each parameter is encoded with 8 bits. 
Weights and biases are normalized between –5.0 and 5.0.  Population size is 

 

 



100. The 20 best individuals of each generation were allowed to reproduce by 
generating 5 copies of their genotype which were mutated by flipping 1% of 
randomly selected bits.

Each individual of the population was tested for 10 trials, with each trial 
consisting of 400 steps (each step lasts 15 ms). At the beginning of each trial the 
arm and the hand is set in a similar but randomly varied position (i.e. the initial 
angles of the joints varies within a 2% range). After 260 steps the planer surface 
is removed to allow un-grasped objects to fall down.  Individual are selected on 
the basis of an ability to grasp the objects. To facilitate the emergence of this 
ability,  however,  individuals  are  also  rewarded  for  the  ability  to  touch  the 
objects with their fingers. More precisely, the fitness is calculated according to 
this formula: NC + NG*1000, where NC is the numbers of contacts between the 
fingers and the objects occurring during the first 260 time steps, and NG is the 
number of time steps in which the object is inside the robot’s hand during the 
successive time steps in which the planar surface has been removed.

3. Results

We ran  four  sets  of  experiments  and  for  each  experimental  set  we  ran  10 
different replications starting from different randomly generated population of 
genotypes.

In the first  set  of  experiments  evolving individuals  were  asked to  grasp 
spherical objects located on the right side with respect to the initial position of 
the  arm.  By  analysing  the  obtained  behaviour  we  observed  that  evolved 
individuals are able to successfully grasp the objects in most of the replications. 
More specifically, in the case of the best replication, evolved individuals show 
an ability to successfully grasp objects in 71% of the cases.

One complex aspect of this task is that, due to the low friction with the 
table, spheres can easily roll away as a result of contact between the arm and 
the object thus preventing the possibility to successfully grasp them. Evolved 
individuals  master  this  complex  situation  by  carefully  calibrating  their 
movements and by appropriately orienting their hand while moving toward the 
object.  Indeed,  in  the  best  evolved  individuals,  the  grasping  behaviour  is 
triggered by internal neurons that  detect when the hand is  correctly oriented 
with respect to the object (Fig. 2).  



Figure 2. Four snapshots of a typical evolved behaviour. The robot approach the object by orienting 
its hand appropriately and then successfully grasp the sphere.

In the second set of experiments evolving individuals were asked to grasp cubic 
objects located on the right side with respect to the initial position of the arm. 
By analysing the obtained behaviour we observed that evolved individuals are 
able  to  successfully  grasp  the  objects  in  most  of  the  replications.  More 
specifically,  in  the  case  of  the  best  replication,  evolved individuals  show an 
ability to successfully grasp objects in the 87% of the cases.

Cubic  objects  do  not  tend  to  roll  away  as  easily  as  spheres.  As  a 
consequence, evolved robots approach the objects through fast movement and 
hit them so that they start to move. The dynamics of the interaction between the 
moving object and the moving hand is exploited in order to modify the relative 
orientation of the object until an effective grasping is obtained.

In the last two sets of experiments evolving individuals were asked to grasp 
objects located both on the left and the right side with respect  to the initial 
position of the arm. These two experimental sets differ with respect to the type 
of objects (spheres or cubes) to be grasped.  

Obtained performance were much worse in both sets of experiments and no 
evolved individual displayed an ability to grasp objects located in both sides. 
Indeed, evolving individuals tended to specialize on only one of the two sides. 

4. Discussion and Future Research Directions

Obtained  results  are  encouraging and demonstrate  that  evolutionary robotics 
techniques might scale up to situations involving robots with several degrees of 
freedom and problems that require an ability to produce sequential behaviors.

However, we  also  showed  that  evolved  individuals  are  not  capable  of 
successfully  grasping objects  placed in  significantly  different  positions.  This 
failure  might  be  explained  by  considering  that  grasping  objects  located  in 
significantly  different  positions  requires  the  ability  to  display  qualitatively 



different sequential behaviours.
To tackle  this  problem  in  future  research  we  plan  to  provide  evolving 

neural controllers with additional internal units that might be used to categorize 
different  environmental  situations  and  modulate  the  behaviour  of  the  basic 
neural controller accordingly so that qualitatively different sequential behaviour 
can be produced in different environmental circumstances.

In particular, we are interested in robots able to develop dynamical internal 
categories, that is internal states that tend to vary while the robot is interacting 
with  the  environment  by  producing  different  dynamical  paths  in  different 
environmental  situations.  Dynamical  categories  of  this  form might  not  only 
allow robots to deal with situations requiring the ability to produce qualitatively 
different sequential behaviours but would also constitute an abstract high-level 
description (dynamically coupled with the sensory-motor flow) of the sequence 
of micro-movements required.
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