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Abstract. The swarm intelligence paradigm has proven to have very inte resting properties such as robustness,

exibility and ability to solve complex problems exploitin g parallelism and self-organization. Several robotics
implementations of this paradigm con�rm that these propert ies can be exploited for the control of a population
of physically independent mobile robots.

The work presented here introduces a new robotic concept called swarm-bot in which the collective interaction
exploited by the swarm intelligence mechanism goes beyond the control layer and is extended to the physical level.
This implies the addition of new mechanical functionalitie s on the single robot, together with new electronics and
software to manage it. These new functionalities, even if not directly related to mobility and navigation, allow to
address complex mobile robotics problems, such as extreme all-terrain exploration.

The work shows also how this new concept is investigated using a simulation tool ( swarmbot3d) speci�cally de-
veloped for quickly designing and evaluating new control al gorithms. Experimental work shows how the simulated
detailed representation of one s-bot has been calibrated to match the behaviour of the real robot.

Keywords: Swarm Intelligence, Swarm Robotics, Distributed Robotics , Recon�gurable Robotics, Collective
Robotics, Physics-Based Simulation.

1. Introduction

Applications like semi-automatic space exploration (Visentin et al., 2001), rescue (Casper et al.,
2000), or underwater exploration (Ayers et al., 1998) need robust and 
exible robotic systems.
Most of these applications require systems combining the following three basic characteristics:

Robustness. Unstable, very complex or extreme environments require robustness to severe
hardware failures.

c
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Versatility. The complexity of the task needs versatility in hardware shape and functionality.
The robot has to perform well in very di�erent terrains and in very di�erent tasks such as
displacement, exploration or object transportation.

All Terrain Navigation. Complex unstructured environments such as distant planetsor ca-
tastrophic environments need a very 
exible and e�cient all -terrain navigation.

The SWARM-BOTS project 1 aims at combining swarm intelligence (Bonabeau et al., 1999)
and physical self-assembling features to provide the abovementioned characteristics to a group
of 35 robots.

The swarm-bot robot concept, as well as the hardware implementation, have been developed in
parallel to a simulator. This last is intended to provide the following supporting functionalities:

� the accurate prediction of both kinematics and dynamics of aswarm-bot in 3D;

� the evaluation of hardware design options for di�erent components;

� the design ofswarm-bot experiments in 3D worlds; and

� the e�cient investigation of di�erent distributed control algorithms.

The work presented here reports the hardware and software development carried out from
October 2001. It is expected that a group of 35 real robots aregoing to be available by the
Fall of 2004. Currently, two single robot prototypes are available. Preliminary control tests on a
group of more than two robots (see the companion paper in thisissue (Dorigo et al., 2004)) are
for the moment possible only within the simulation environment (swarmbot3d).

The next section presents theswarm-bot concept in more details and places it into its research
context (Section 2). The physical hardware implementation of a swarm-bot component (s-bot)
is illustrated in Section 3. The swarmbot3dsimulation environment is discussed in Section 4.
Section 5 is dedicated to the experimental comparison between simulated and reals-bots while
�nal conclusions are drawn in Section 6.

2. Concept and Related Work

The objective of the SWARM-BOTS project is to study a novel approach to the design, hardware
implementation, test, and use of a self-assembling, self-organizing, metamorphic robotic system
called swarm-bot. This approach �nds its theoretical roots in recent studies in the �eld of swarm
intelligence, that is, in studies exploiting the self-organizing and self-assembling capabilities
shown by social insects and by some other animal societies (Bonabeau et al., 1999).

An important part of the project consists in the physical construction of at least one swarm-
bot, that is, a self-assembling and self-organizing robot colony composed of a number (30-35) of
smaller devices, called s-bots (Figure 1). Eachs-bot is a fully autonomous mobile robot capable
of performing basic tasks such as autonomous navigation, perception of the environment and

1 Swarm-Bots is a European IST-FET (Future and Emerging Technologies) pr oject, grant IST-2000-31010, for
more details seehttp://www.swarm-bots.org .
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Figure 1. A graphic visualization of the s-bot concept. The main body (turret) is equipped with passive and active
gripping facilities, sensors and electronics. The lower body (traction system) is equipped with tracks and it hosts
the batteries. The diameter of the main body is 116 mm.

grasping of objects. In addition to these features, ones-bot is able to communicate with other
s-bots and physically connect to them in 
exible ways, thus forming a so-called swarm-bot.
Such a robotic entity is able to perform tasks in which a single s-bot has major problems,
such as exploration, navigation, and transportation of heavy objects on very rough terrain (see
Figure 2 for an example). This hardware structure is combined with a distributed adaptive
control architecture loosely inspired upon ant colony behaviors (Dorigo et al., 2004).

The �nal goal of the SWARM-BOTS project is illustrated by a sc enario describing the type of
operation that this novel robotic concept aims at achieving. This scenario consists in transporting
a very heavy object from its initial location to a target de�n ed by a light. The light cannot be
seen from the area where the object is initially placed and there are several possible paths for the
transport. These paths have di�erent lengths and include large obstacles and holes. The scenario
itself is split in four stages. During the �rst stage a group of s-bots searches for a heavy object,

Figure 2. Graphic visualization of how the rigid gripper can be used to connect in a secure way s-bots among
themselves so to form chains for overcoming large obstaclesor holes.
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grasps it and starts moving it in a collective way. In parallel, another group of s-bots disperses
in the environment to search for the goal. In the second phasethe s-bots create a path linking
initial and goal positions for the object. In the third and fo urth phases, thes-bots transporting
the object have to move over a hole and through a narrow passageway by recon�guring their
position around the object.

This scenario emphasizes several key features of theswarm-bot concept, and particularly the
three aspects mentioned in the introduction (Section 1), that is, robustness, versatility, and rough
terrain navigation. This concept would therefore be well adapted for exploration in extreme rough
terrain. The collective robustness and the self-assembling versatility can be used to climb obsta-
cles and transport objects also in situations where a singlerobot acting alone could not succeed.
This gives aswarm-bot a clear advantage over existing collective robotic systemsin rough terrain
conditions. Additionally, distributed hardware and contr ol provide strong robustness to failures,
which is an advantage over both classic rovers and self-recon�gurable robots, that often have
a centralized control (Kamimura et al., 2001; Yim et al., 2002). Even if a swarm-bot concept
cannot be used to form complex 3D structures, it �ts well rough terrain situations and can
perform well in search tasks where dynamic assembly and disbanding are required.

In the next sections the details of theswarm-bot concept are presented within the research con-
text of exploration in rough terrain conditions. The description is structured following the three
main features needed by this type of robots: robustness (Section 2.1), versatility (Section 2.2),
and rough terrain navigation (Section 2.3). In each section, a comparison is drawn between the
swarm-bot concept and the related state-of-the-art robots.

2.1. Robustness to Hardware Failures

The problem of robustness to physical damages plays a crucial role in unstructured and unstable
environments, such as those found in post-catastrophic situations or space exploration. Large
obstacles, holes in the ground, unstable hindrance, �re, explosions, water, chemicals or other
dangerous agents can cause damages to a robotic system. In order to ensure the most e�cient
task execution, a system has to be fault tolerant and ensure operation even if a large part of it,
such as half of the hardware, is lost.

2.1.1. State of the Art. A widely used technique to overcome hardware failures is redun-
dancy. Most of the literature on fault tolerant systems deals with minor failures that can be
corrected with a robust control or with systems which have intrinsic redundancy, like distributed
communication networks. A typical example exploiting intr insic redundancy is the failure of a
node in a communication network. In this case the system, if well controlled, can continue to
operate using the remaining working parts. To face this typeof partial failure, which is the most
common in engineering systems, the main design e�ort has to be placed in the control part of
the system (Stengel, 1991). An e�cient fault tolerant contr ol is based on failure detection and
correction. Both of them need a major design e�ort and an accurate model of the system. To
correct major failures, additional and speci�c hardware redundancy becomes necessary.

In case of exploration in extreme environments, hardware failures can be frequent and major.
Here robust control is not anymore su�cient and redundancy has to be introduced also at the
hardware level, building in this way multi-robot systems.
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Most of the research done in this direction is known under thename ofcollective roboticsand
represents a very active �eld. An overview can be found for instance in a survey by Parker et
al. (Parker et al., 2000). A major focus of this research community is distributed control, and
there is little research on exploiting the collective self-organization at the hardware level. The
main motivation of collective robotics research is the coordination of several systems (Gerkey
and Matari�c, 2002; Agassounon et al., 2001; Melhuish, 1999; Flocchini et al., 2000) and the
robustness that can be achieved by the redundancy of the whole system (Parker, 1998; Goldberg
and Matari�c, 2002; Fukuda et al., 1999). An increasing number of applications, such as space
robotic missions (Chien et al., 2000; Earon et al., 2001) where there is a strong advantage in
obtaining a more robust system, plan to exploit this type of information processing.

Hardware modularity and redundancy can also be found in the �eld of self-recon�gurable
robots. There the research activity is complementary to that of collective robotics and is mainly
focussed on hardware modularity with relatively little research on autonomous perception and
action in the environment.

Pioneering examples of self-recon�gurable robots are MTRAN (Kamimura et al., 2001) and
PolyBot (Du� et al., 2001). An overview of existing systems and characteristics can be found
in the work of Kamimura et al. (Kamimura et al., 2001), or in th e work of Yim et al. (Yim
et al., 2002)). MTRAN and PolyBot use both a large number of simple modules, they both
have been physically implemented, and they both can self-recon�gure. Despite their very good
hardware 
exibility, both MTRAN and PolyBot have been desig ned with a centralized control
perspective, which, in comparison with the decentralized ones, shows reduced robustness to
failures. The latest articles on these two research works show that MTRAN is keeping the
centralized control approach (Kurokawa et al., 2003) whilethe PolyBot team is working on new
decentralized approaches under the name of Phase Automata (Zhang et al., 2003).

The �rst 3D self-recon�gurable robot with decentralized control has been the CONRO hard-
ware (Castano et al., 2000) which runs the decentralized control developed by St�y et al. (St�y
et al., 2002) or the one developed by Salemi et al. (Salemi et al., 2001). These controllers allow
the robot's hardware modules to change their relative position while the system is running.
During this dynamic change, each involved module re-adaptsautonomously its behavioral role
in the system. Although this demonstrates software robustness towards structure modi�cations
and failures, automatic hardware failure correction is notyet implemented and would require a
major redesign e�ort. Hardware failure detection and correction are in fact known to be hard
to implement in a reliable way (Blanke et al., 1997).

2.1.2. Swarm-bot Robustness. Robustness is ensured within the SWARM-BOTS project
by distributed hardware and control. Each s-bot is a simple but fully autonomous unit capable
of displacement, sensing and acting based on local information and decisions. This is a clear
distinction from self-recon�gurable robots, where each unit has no mobility, very limited sensing
capabilities and acts often under the control of a central unit. The self-assembling ability of the
swarm-bot is added on top of thes-bots, enabling a swarm behavior at the level of the physically
connectedswarm-bot system. The global task execution is obtained by the exploitation of robot-
robot and robot-environment properties, without centrali zed planning and control. Both the
swarm-bot control strategy and the distributed hardware ensure good robustness to hardware
failures.
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Figure 3. Bottom view of the s-bot robot. A di�erential treels c
 drive ensure the displacement of the s-bot. The
motor base with the treels c
 can be oriented independently of the main body.

As mentioned above, the robustness of the concept is based onthe distribution of the task over
a group of s-bots, each of them able of autonomous displacement, sensing, acting and control.

The mobility of the system is ensured by a combination of two tracks and two wheels, as
illustrated in Figure 3. Each track is connected to the wheelof the same side and it is controlled
by an independent motor. Wheel and track on the same side are driven by the same motor,
building a di�erential drive system controlled by two motor s. This combination of tracks and
wheels was labelledDi�erential Treels c
 Drive2. Such a combination has two advantages. First, it
allows a more e�cient rotation on the spot due to the larger di ameter and position of the wheels.
Second, it gives to the traction system a shape close to the cylindrical one of the main body
(turret), avoiding in this way the typical rectangular shap e of simple tracks and thus making
navigation simpler.

The di�erential treels drive allows each s-bot to move in moderately rough terrains3, while
more complex situations are handled byswarm-bot con�gurations.

The motor base with the treelsc
 can rotate with respect to the main body by means of a
motorized axis, as illustrated in Figure 3. This ensures an independent movement of the upper
part where the sensors and the physical connections to otherrobots are located.

Eachs-bot is equipped with sensors necessary for navigation, such as infrared proximity sensors,
light and humidity sensors, accelerometers and incremental encoders on each degree of freedom.
In addition, each robot is equipped with sensors and communication devices to detect and
communicate with other s-bots, such as an omni-directional camera, color LEDs all around the
robot, local color detectors and sound emitters and receivers. In addition to a large number of
sensors for detection of the environment, several sensors provide each s-bot with information
about physical contacts, e�orts, and reactions at the interconnection joints with other s-bots.
These include torque sensors on most joints as well as traction sensors on the connection belt.

Research on social insects (Camazine et al., 2001) suggeststhat collective robotics could bene�t
from multi-range and multi-modal sensing in order to perceive and exchange signals at multiple
levels and in several circumstances. Because of this, as well as for more practical reasons of

2 Treels is a contraction of TRacks and whEELS
3 Obstacles no more than 3{4 cm high, 30% slope, and gaps not larger than 3{4 cm.
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Figure 4. The environment in rescue operation is composed of obstacles of very di�erent size and shape, including
wires, walls, tubes and gaps.

interference, infrared proximity (active) sensors mainly have a very short range. Sound has
instead a much longer range span. The camera, which is a passive sensor, is thought to be used
both for long and short range sensing, depending on the features extracted from the image.

The control architecture of a swarm-bot consists of distributed algorithms based on local
information and simple self-organization rules inspired upon ant colony behaviors (S�ahin et al.,
2002; Dorigo et al., 2004). Although this type of control algorithm does not need much compu-
tational power, the large number of sensors and degrees of freedom requires fast pre-processing
and e�cient control. Therefore s-bots are equipped with a network of several processors, each of
them responsible for a particular sub-task in the system. The main processor is in charge of the
management of the entire system and of the communication with a base station for monitoring
purposes. This processor runs a standardLinux OS allowing in this way the use of standard
development tools, such as compilers and debuggers, as wellas an easy porting of custom made
robotic development tools, such as speci�c control libraries or monitoring tools. S-bots are also
equipped with a radio link to a base station just for monitoring purposes (not for control).

2.2. Versatility

The environment where a robot has to move about in applications of extreme exploration includes
a large number of obstacles anywhere and of any kind: from �ssures to deep vertical holes, from
small pebbles to large rocks, from wires to walls, from long tubes to compact blocks, etc. (e.g.,
Figure 4). It may happen, for instance, that robots need to beintroduced into small holes, and
once inside they need to overcome large gaps, to descend a vertical duct ending in a large void,
and �nally to pass in other narrow passageways. Robots designed to cope with only one or two of
these features are surely challenged by the other ones. It may also happen that a mission starts
with a goal and ends up with another one. For instance, a mission can start with an exploratory
phase and �nish with a transportation task. To be successful, a robot has therefore to be very
versatile, that is, capable of dynamically changing shape and control functionality depending on
the situation it faces.
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2.2.1. State of the Art. Modularity is a widely used technique to ensure versatility. At the
control level, modularity is often implemented by distribu ted approaches in the structure of the
control system (Callen, 1998; Zhang et al., 2001) or in the control process itself, as in collective
robotics. At the hardware level, modularity and versatilit y are clearly represented by the �eld
of self-recon�gurable robots.

Modularity provides versatility at several levels in collective robotics. A physically distributed
system allows distributed sensing, acting and processing.Simultaneous distributed sensing de-
livers high 
exibility in placing the sensors according to the con�guration of the search space,
thus improving search e�ciency. A good example of this type of situation is given by Hayes et
al. (Hayes et al., 2001) where a very di�cult search task, plume tracing, is performed using a
swarm of robots equipped with odor sensors.

Distributed acting allows versatility in transport tasks ( Kube and Bonabeau, 2000; Gro� and
Dorigo, 2004), exploiting the possibility to change the number of agents involved depending on
the e�ort needed. Sorting is another example where multipleagents can improve versatility of
the system (Martinoli et al., 1999; Wilson et al., 2004). Transport (Detrain and Deneubourg,
1997), sorting (Deneubourg et al., 1991), or structure building (Camazine et al., 2001) are typical
tasks where collective robotics can take inspiration from the behavior of social insects (Bonabeau
et al., 1999) providing e�cient and versatile solutions.

At the hardware level, advanced modularity and versatility are shown by self-recon�gurable
robots. These systems are built with a large number of physical modules acting together within
a unique body. Each module provides few degrees of freedom. These modules, when assembled
together, give the body an extraordinary physical versatility. An additional feature is given by
the possibility of the system to connect or disconnect modules autonomously, enabling self-
recon�guration. Based on such a characteristic, a robot canchange shape depending on the
environment, as shown by PolyBot (Yim et al., 2000a) and by other robots such as MTRAN
(Kamimura et al., 2001). The structure of the modules and of the possible con�gurations change
very much across existing systems. The most advanced ones show 3D con�gurations like snakes,
tracks, spiders, and quadruped legged systems. Both PolyBot and MTRAN have displayed
transition between shapes in hardware.

Experiments of mobile robots equipped with connection capabilities showed that it is possible
to create larger structures. This is the case of the Millibotrobot units, which have been modi�ed
to enable the creation of a Millibot train (Khosla et al., 2002). Such a structure is equipped
with one degree of freedom between each robot, enabling a rotation around a horizontal axis.
This allows each robot placed inside the structure to lift vertically the next robot connected to
it, bending the train vertically. Although the whole struct ure seems to bring some additional
mobility when facing large obstacles, it o�ers a very limited 
exibility and lateral mobility.
Moreover, the version of Millibot able to create trains has very limited sensor capabilities, due
to mechanical constraints and small size.

2.2.2. Swarm-bot Versatility. Versatility is given in a swarm-bot by the presence of many
entities that can self-assemble in a unique body and disbandwhen the union is no longer
necessary. This feature combines the properties of controlversatility found in collective robotics
with some hardware versatility found in self-recon�guring robots. Since eachs-bot is a fully
autonomous mobile robot, aswarm-bot can not only self-recon�gure, but it can also self-assemble
and disassemble e�ciently. S-bots can leave aswarm-bot con�guration, move around it and
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Figure 5. The s-bot rigid gripper rotates around a horizontal axis. It can conne ct either ensuring a rigid grip or
leaving some freedom of movement.

join it again when necessary. This is a major additional feature with respect to existing self-
recon�gurable robots, which form a unique and monolithic structure. Compared with a Millibot
train, a swarm-bot can form more complex and 
exible con�gurations, due to better mechanical
and electronics capabilities. Eachs-bot has, in fact, about 50 sensors and 9 actuators, as opposed
to a Millibot unit which has just about 10 sensors and 3 actuators. The large number of sensors
and actuators allowss-bots to ensure more e�cient connections and operations.

S-botshave two types of possible physical interconnections for self-assembling into aswarm-bot
con�guration: rigid and semi-
exible.

Rigid connections between twos-bots are established by a rigid gripper mounted on a hor-
izontal active axis (Figure 5). Such a gripper has a very large acceptance area allowing it to
realize a secure grasp at any angle and, if necessary, allowing it to lift another s-bot. Similar
connections are made by ants when they build bridges or otherrigid structures (Lioni et al.,
2001). The large acceptance area is a very signi�cant aspectfor connections taking place among
independent autonomous robots on rough terrains. Buildinga self-assemblingswarm-bot by
means of interconnecting robots is a very di�erent task than interconnecting modules in a self-
recon�gurable robot. This last can in fact compute the exact position of each module in order
to ensure precise positioning during interconnection (Agrawal et al., 2001). This is not the case
in a swarm-bot where there is freedom of connecting at several angles and with less accuracy.
This is a very crucial di�erence with respect to a Millibot tr ain, whose units must align very
accurately in order to interconnect.

The s-bot rigid gripper can grasp other s-bots on a T-shaped ring around the mains-bot body
(turret). If it is not completely closed, such a grasp lets the two joined robots free to move with
respect to each other while navigating on a rough terrain. Ifthe grasp is �rm, the gripper ensures
a very rigid connection which can even sustain the lifting upof another s-bot. However, lifting
with the rigid gripper more than one s-bot is not possible. This is a major di�erence between a
swarm-bot and other self-recon�gurable robots, which can instead form quite complex 3D shapes
while moving and overcoming obstacles. Nevertheless, aswarm-bot does not require complex 3D
shapes, since its mobility is guaranteed by the combined e�ort of each s-bot.

Semi-
exible connections (Figure 6) are implemented by a gripper positioned at the end of
a 
exible arm actuated by three servo-motors positioned at the point of attachment on the
main body. The three degrees of freedom allow to extend and move laterally and vertically the
arm (Figure 7 and 8, respectively). This structure is a modi�ed version of the DELTA robot
(Clavel, 1988). The gripper at the end of the arm (called in the following \
exible gripper") is
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Figure 6. Two s-bots connected using semi-
exible connections.

similar to the rigid gripper mentioned above. The orientation of this gripper is kept in a default
position by the cables 
exibility, but can rotate around a ve rtical axis. Rigid and semi-
exible
connections have complementary roles in aswarm-bot. A rigid connection is mainly used to form
solid chains for passing large gaps or obstacles (Figure 2).A semi-
exible connection is instead
used for con�gurations wheres-bots need to stay close to each other but at the same time they
still retain relative freedom of movement with respect to each other (Figure 9). A swarm-bot
can also have mixed con�gurations, which include both rigid and semi-
exible connections. A
third type of connection among s-bots can take place through an external object in case of a
transporting task (Figure 10).

Rigid and semi-
exible connections are not designed to create complex 3D structures. Most of
the con�gurations envisioned are close to the examples shown in Figure 2 and 9. In any case, a
rigid connection allows the creation of simple 3D structures, for instance where peripherals-bots

Figure 7. The semi-
exible connection can be extended, retracted, and moved laterally.
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Figure 8. The semi-
exible connection can be moved also vertically.

Figure 9. Graphic visualization of how lateral semi-
exible connect ions are going to be used to keep relative
mobility between s-bots while they are in a swarm-bot con�guration. This 
exible structure can help for instance
to pass local small obstacles.

are placed vertically to help a swarm-bot to overcome obstacles. This type of 3D 
exibility is
exploited mainly for climbing obstacles too steep for the tracks of a singles-bot.

Figure 10. Most swarm-bot con�gurations will include both rigid and semi-
exible con nections.
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2.3. Rough Terrain Navigation

A robot capable of navigating in unstructured environments should be able to get across rough
terrains as well as through cavities and narrow passages. Aswarm-bot o�ers within this context
an innovative solution in improving mobility by exploiting physical collaboration of a collective
system.

2.3.1. State of the Art. Navigation in rough terrain conditions is mainly addressed by
articulated rovers and recon�gurable robots. Examples of rovers include theshrimp robot (Es-
tier et al., 2000), the family of space exploration robots byESA4 (Visentin et al., 2001), the
path�nder rover used on Mars (Stone, 1996), as well as other speci�c rovers for missions like
volcano explorations (Bares and Wettergreen, 1999). This type of research is mainly focussed
on mechanical structures of articulated wheels and tracks and their ability to pass obstacles.
Although most of these rovers are remotely controlled, research aims also at developing sensors
for autonomous operation (Vandapel et al., 1999) or to help the remote operator (Matthies et al.,
2002).

Some researchers consider multiple rovers for all-terrainexploration (Chien et al., 2000; Earon
et al., 2001) exploiting distributed hardware and, in some cases, distributed control to obtain a
more robust system and better exploration performances5. To the best of the authors' knowledge,
nobody has yet tried to take advantage of the collective aspect for obstacle climbing, except for
some preliminary experiments using the modi�ed version of Millibot mentioned earlier.

Research in self-recon�gurable robots addresses the same problem in a totally di�erent way,
building modular systems that are 
exible and can walk, creep, and roll in rough environment
conditions. Simulations of PolyBot have been based on an all-terrain scenario (Yim et al., 2000b)
and the typical goal of the CONRO system is earthquake search-and-rescue and battle�eld
surveillance and scouting (Castano et al., 2000). Despite these goals, the sensors included in
these developments are mainly used for perception of the internal state of the system and there
is practically no perception of the environment. This is motivated in some cases by pure tele-
operation. Pure tele-operation, however, may not be su�cient for e�cient operation. The remote
perception of the environment is in fact limited by time delays, communication bandwidth, and
representation of the environment to the remote operator (Murphy et al., 2000; Matthies et al.,
2002). Semi-autonomous tele-operation, using local information and performing local control,
can improve operability and allow to achieve the task in an e� cient way. There is therefore
a need for including sensors on this type of robots, as shown by recent work on the CONRO
system (St�y et al., 2002).

Another problem in rough terrain operation of self-recon�gurable robots is the contact of the
robot with the ground. Although snake-like structures can be quite e�cient, performance is less
convincing in legged con�gurations. The contact with the ground is guaranteed in this latter
case by the module at the end of the chain. Such a module is in this way forced to have its
inter-modules connector, that is its most sensitive part, in contact with the ground. A future
recon�guration of the system might therefore fail due to possible severe damage of the modules
previously used as feet. Solutions to this problem are yet tobe found.

4 European Space Agency
5 http://www.sandia.gov/isrc/Swarm.html
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The approach taken by a Millibot train is much closer to that o f the swarm-bot concept.
However, despite its ability to self-assemble and form chains that can climb large obstacles, the
very limited capacities of each module and the limited lateral mobility of the one-dimensional
trains show strong limitations of the entire concept.

2.3.2. Swarm-bot Ability to Deal with Rough Terrain. The overall mobility of a
swarm-bot is guaranteed by the mobility of each singles-bot composing it.S-botsare not designed
to be used as modules of a leg, as it happens for instance in thecase of self-recon�gurable robots.
The gripper used for the interconnection between two robotsdoes not have su�cient torque to
support this type of structure. The con�gurations displayed by a swarm-bot are mainly bi-
dimensional with the possibility of lifting up lateral s-bots in order to overcome large obstacles.
The tracks of one s-bot are therefore always the point of contact to the ground for aswarm-
bot. The possibility of rotating the tracks with respect to the t urret (Figure 3) ensures suitable
mobility of the entire structure even when s-bots are rigidly connected.

The control of a swarm-bot structure in rough terrain conditions is strongly inspired on insect
behavior (Lioni et al., 2001; S�ahin et al., 2002). Most structures are built of chains of s-bots
combined with lateral connections for overall stability. T he process of passing an obstacle is
based on local push-pull operations. The self-assembling feature is strongly exploited: aswarm-
bot structure is assembled, if necessary, and disbanded as soonas possible, using in this way the
robots as much as possible as independent units.

As a �nal remark, the limited size of one s-bot �ts very well the constraints of a catastrophic
search operation which requires introduction of a robotic unit into very narrow entry points.
This characteristic gives to the swarm-bot entity the possibility of accessing internal voids. Once
inside, a swarm-bot navigates adapting to the environment conditions which maydemand self-
assembling of the swarm and disaggregation of the same when the union is no longer needed.

3. Hardware Implementation

This section illustrates the feasibility of the swarm-bot concept, showing how it has been imple-
mented and brie
y summarizing some preliminary results. The discussion presents an overview of
the mechanical (Section 3.1), electronic (Section 3.2), and software (Section 3.3) implementations
of the �rst prototype.

3.1. Mechanics

The design described in Figure 1 was done so as to include all necessary details to build a
real robot. All parts were designed to be feasible and most mechanisms tested during the
design. Figure 11 shows all major parts included in this design. Each of them was translated
into a technical manufacturing drawing (blueprint) and the n produced. Figure 12 shows the
corresponding real parts.

The production methods employed were very di�erent depending on the type of part. Standard
machining was used for very simple components, such as some bars of the 
exible arm, or parts
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Figure 11. Exploded view of most of the components.

that needed to be metallic, such as some gears or axes. Chemical machining was instead employed
for 
at parts like the electric contacts molded inside the gripper (Figure 17). Most of the parts
were molded, which implied �rst to manufacture a mold and then to create the part itself. This
manufacturing approach asks for a bigger initial e�ort but i t allows to reproduce parts very
easily. Due to the number ofs-bots that we plan to produce (thirty-�ve), this method allows a
cheap and fast production.

At the time of writing, two s-botshave been fully assembled and tested (Figure 13). By March
2004, the plan is to have aswarm-bot of 10 fully operational s-bots.

The treels c
 mechanism has shown very good performance during tests in rough terrain con-
ditions (Figure 14). The association between tracks and wheels performs very well both in
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Figure 12. Exploded view of most of the real parts.

straight motion, where tracks ensure a powerful displacement, and in sharp turns, where the
wheels, which are bigger than the tracks and placed on a bigger radius, play a key role and
ensure a very good rotation.

The rigid gripper (Figure 15) is another important part of an s-bot, and it has been crafted so
that it can lift another s-bot. This feature requires a good torque and a good rigid connection
between the gripper and thes-bot to be lifted. The gripper is able to grasp rigidly another s-bot
using a lockable gripper, which can be locked mechanically to keep its position.

Comparison results between simulated and real robots both for a singles-bot and for a swarm-
bot con�guration are presented in Section 5.

3.2. Electronics

An overview of the electronic structure controlling the robot is given in Figure 16. The CPU is an
Intel XScale processor runningLinuxOS and controlling directly the sound and camera interfaces.
The camera is a standard color web cam with a resolution of 640x480 pixels connected to the main
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Figure 13. Swarm-bot prototype using the rigid connection to pass a gap.

processor using a USB bus. A spherical mirror facing the vertical optics allows to have a 360�

panoramic view. All other devices on the robot are controlled by local PICT M micro-controllers6

communicating with the main processor using an I2C bus.

The electronics is mainly included in the centrals-bot body (turret), but several printed circuits
are located in places where they support sensors or local control electronics. In some cases the
printed circuit is molded inside the mechanical parts, as seen for instance in Figure 17.

The most important integration e�ort in size, power consump tion, and computational power
has been made at the level of the main XScaleLinux board. Developed to �t in a very small size
(just about a credit card), this board has been integrated successfully inside thes-bot after a long

6 PIC T M micro-controllers are products of Microchip Corp. See http://www.microchip.com for more details.

Figure 14. Treels c
 mechanism during tests.
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Figure 15. CAD and real view of the gripper mechanism partially assembl ed to show the internal mechanics. On
the real view the black gear ensures the elevation of the gripper. Inside the gripper support a white gear ensures
the symmetrical con�gurations of the jaws.

process of prototyping and software development. The main characteristics of this board are:
64MB RAM memory, 32MB Flash memory, two slots for compact-
ash cards (able to support
radio-ethernet or bluetooth), USB master and slave interfaces, I2C bus and serial port. The
XScale processor runs at 400 MHz. Tests ofLinux running on the board have shown a power
consumption of 750 mW. Computational tests have shown that this type of processor can process
simple algorithms on full color images (640x480) in 100{200ms.

Each s-bot is equipped with two Lithium-ION accumulators placed between the tracks. The
capacity of these accumulators is 10 Wh. Preliminary measurements show a power consumption
of ones-bot between 3 and 5 W, which ensure continuous operation for at least two hours.

elevation motor
rotation motor
gripper motor

omnidirectional cameraXScale Linux
400MHz
64M RAM
32M Flash 2xspeaker

4x microphone

I2C bus

gripper sensor

(CompactFlash)

PIC processor
3 axis inclinometer
2x humidity and
temperature sensors

3x PIC processor

3x PIC processor

differential treels
drive

PIC processor 4 ground proximity
sensors

2x PIC processor

Lithium ION Battery 10Wh

gripper sensor

PIC processor 15 proximity sensors

PIC processor
light sensors

8x RGB LEDs

2x servo
gripper and arm motor

DC/DC

WiFi

PIC processor 2D traction sensor

Figure 16. Overview of the electronics controlling the s-bot.
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Figure 17. Gripper teeth: 3D model showing the internal printed circui t and electrical contact (left) and real part
(right).

3.3. Software

The low level software is distributed among the 14 processors controlling all the functionalities.
One of them is the ARM main processor runningLinux and described above. The ten other
processors are PICT M micro-controllers, each programmed for a very speci�c task. Five of them
perform motor control, while the other �ve perform sensor processing. The �ve PICT M motor
controls have been programmed in assembler, and the remaining other eight in C. All of these
processors have a part of the code managing the communication through the I 2C bus, whereas
the rest manages the custom functionalities they are responsible for. This last part of code can
include some preprocessing or some local control loop whichcan be supervised by the main
CPU with commands sent over the I2C bus. As an example, it can be mentioned the control
loop using the torque sensors on the motors or the IR sensors data preprocessing.

4. The Simulation Tool

This section presents the simulation environment (swarmbot3d) complementing the hardware
part of the swarm-bot concept described earlier.

The simulator was planned in order to cover the current lack of commercial products or research
prototypes allowing to tackle all the aforementioned aspects of the SWARM-BOTS project at
the same time. Most of the tools available on the market concentrate, in fact, on speci�c aspects
of the distributed intelligence paradigm and they generally deal with 2D worlds only.

Swarmbot3dwas developed to work as an aiding tool for accurately predicting 3D kinematics
and dynamics of a singles-bot in a swarm-bot, for evaluating possible new options for hardware
parts, for designing new experimental set-ups in 3D, and forquickly evaluating new distributed
control ideas before porting them to the real hardware (Pettinaro et al., 2002).

The main characteristics of this simulation environment can be summarized as follows.

3D dynamics. It is a 3D dynamics simulator of a multi-agent system (swarm-bot) of cooper-
ating robots (s-bots).
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Hardware s-bot compatibility. It provides s-bot models with the functionalities available on
the real s-bots. It can simulate di�erent sensor devices such as IR proximity sensors, an
omni-directional camera, an inclinometer, sound, and light sensors.

Software s-bot compatibility. Controllers that are developed usingswarmbot3dcan be ported
directly to the hardware s-bot due to a common application programming interface.

Interactive control. It provides online interactive control during simulation, useful for rapid
prototyping of new control algorithms. Users can try, debugand inspect simulation objects
while the simulation is running.

Multi-level models. It provides most robot simulation modules at di�erent level s of detail.
It also provides a hierarchy of four s-bot reference models with increasing level of detail.
Dynamic model switchingis an included feature which allows to change the robot represen-
tation model in real-time. This allows a user to switch between a coarse and a detailed level
of simulation model to improve simulation performance at any time.

Swarm handling. It allows to handle a group of robots either as independent units or in a
swarm-bot con�guration, which can be thought of as an entity made of s-bots connected
to each other. The connections are created dynamically at simulation time and can be
eliminated when the components disband. Connections may beof a rigid nature giving to
the resulting structure the solidity of a whole entity. This feature is unique with respect to
other existing robot simulators.

This section is dedicated to present several aspects of theswarmbot3dsimulation tool: from
its internal structure to how robots have been modeled.

4.1. State of the Art

Simulation of multiple robot systems has been addressed mainly in the �elds of multi-agent
systems, arti�cial life, distributed AI and autonomous mob ile robotics. The simulation tools de-
veloped for these areas, depending on the abstraction level, have ranged from simple cellular au-
tomata to highly distributed realistic environments such as, for instance, MissionLab (MacKenzie
et al., 1997), which supports execution of multiple robots both in 2D-simulation and on actual
robotics platforms.

Another simulation package for large multi-agent systems is Swarm (Minar et al., 1996) de-
veloped at the Santa-Fe Institute. The modeling formalism adopted by Swarm is a collection of
independent agents interacting via discrete events. Each entity can generate events that a�ect the
entity itself and other agents. A simulation consists of scheduling the interactions among agents.
Although Swarm simulates multiple agents, this discrete-event simulator is not appropriate for
simulation of mobile robots.

There are three further multiple robot simulators worth bei ng mentioned: Player/Stage, Team-
Bots, and MuRoS. They are all designed to deal with 2D worlds,and, because of this, they do not
comply with the basic requirement of simulating s-bots in 3D. Player/Stage (Gerkey et al., 2001)
is a public domain simulator developed at the Robotics Lab ofthe University of South California
(USC). Its characteristic is that of being a scalable multiple mobile robot simulator with each
robot moving about and sensing a two-dimensional bit-mapped environment. TeamBots (Balch,
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1998) is a Java-based 2D simulator for multi-agent mobile robotics research. Its distribution is
written entirely in Java and its release is open source. Last, MuRoS (Chaimowicz et al., 2001) is a
simulator developed at the University of Pennsylvania. Such a simulator allows 2D simulation of
several multi-robot applications such as cooperative manipulation, formation control, foraging,
etc. It is interesting to point out that in MuRoS tasks both lo osely and tightly coupled can be
simulated. With the exception of the restriction to 2D envir onments, MuRoS seems to address
the same goals of the SWARM-BOTS project, including the formation of 
exible and rigid
cooperating structures.

It should be mentioned for the sake of completeness that there exists a variety of robotic soccer
simulators such as the o�cial RoboCup simulator (Noda, 1995), JavaSoccer, SoccerBots (part
of the TeamBots package). However, all of them are used to simulate only disconnected robots
and they do not consider the possibility of dynamically creating inter-robot connections.

Finally, we mention Webots, a simulator which was originally developed for the KheperaT M

robot but which is now able to support any type of autonomous vehicle, including wheeled, legged
and 
ying robots (Michel, 1998). Earlier versions of this simulator were purely kinematics based.
However, its latest release has been extended to handle dynamics using a physics engine based
on the Open Dynamics Engine7 libraries. The software includes a complete library of actuators
and sensors for building customized robots. Webots would have been an interesting candidate
for simulating a swarm-bot; unfortunately, its version using dynamics became available too late
to be considered in the project.

4.2. Structure

Swarmbot3dis a 3D dynamics simulator. This means that it is able to take into account physical
laws related to properties such as mass, friction, or acceleration in the usual Euclidean space.
The simulator is built on top of Vortex8, a commercial physics engine used in many applications,
including the pioneering work of Karl Sims on evolved creatures (Sims, 1994).

Simulation models of environments and robots, as well as world properties such as friction,
gravity, and so on, are all de�ned in an external text �le writ ten in XML format. Robot control
programs are expressed in terms of the same application programming interface (API) available
in the real robot hardware. This guarantees full portabilit y of any control developed using
swarmbot3d.

The simulator provides a simple graphic user interface (GUI) developed in Python, a high
level interpreter language, for controlling the simulator's parameters (such as gravity, simulator
speed, time step, and so on) and for controlling directly each s-bot. This Python-based GUI
provides also a command line interface for directly interacting with the simulated robots. This
feature has shown to be very useful for online debugging, scripting, and rapid prototyping of
control strategies.

7 Open Dynamics Engine (ODE) is an open source project.
8 http://www.cm-labs.com .
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Table 1. Modularity of the simulated s-bot in subsystem compo-
nents with di�erent levels of abstraction.

Subsystem Abstraction

) 2 spherical wheels

treels c
 ) 6 spherical wheels

) 6 detailed teethed wheels

turret
) cylinder

) detailed description

rigid gripper
) box with on-o� connection capability

) detailed toothed jaws


exible gripper ) detailed scissor-like arm

4.3. S-bot Modeling

Swarmbot3dhas been designed with three main features in mind: (i) modularity, (ii) multi-level
modeling, and (iii) dynamic model switching. Such a multi-featured design philosophy allows to
build a 
exible and e�cient simulator.

4.3.1. Modularity. This characteristic allows users to have a large freedom in customizing
their own swarm according to their speci�c research goals. This revealed to be very useful during
the early prototype stages of the robot hardware when its speci�cations often changed. Since the
simulation models were developed in parallel with the hardware prototype, the use of modularity
allowed not only to re-model a speci�c s-bot geometry, but also to extend swarmbot3dwith
new mechanical parts or new sensor devices which became available throughout the hardware
development. To implement the modular design philosophy, one s-bot model was divided in 4
subsystems: the treelsc
 , the turret, the rigid gripper, and the 
exible gripper. Som e of these
subsystems have been implemented at di�erent abstraction levels, as explained in the next
subsection (see also Table1).

4.3.2. Multi-Level Modeling. This characteristic provides di�erent models for the same
part, so that an end-user is given the possibility to load the most e�cient and functionally
equivalent abstraction model among those available to represent the reals-bot.

For example, ones-bot may be loaded as a detailed model when an accurate simulationis
needed; or it may be loaded as a crude abstraction for the evaluation of a big swarm, in which
case the accuracy of a single robot might not be a crucial aspect. People working with learning
or swarm intelligence techniques might in fact be more interested in simple coarses-bot models.
Conversely, those experimenting with the interaction of relatively small groups of s-bots(between
5 and 10) might prefer to use a more re�neds-bot model.

Viewed in terms of subsystems, de�ning an abstraction for one s-bot consists in de�ning an
opportune combination of some of the subsystems at the desired level of detail (Table 1). Since
the use of a particular model re�nement in
uences considerably the time required to simulate
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it on a given computing hardware, the level of abstraction has to be chosen as an opportune
trade-o� between simulation e�ciency (speed) and accurate reproduction of reality.

As an aid to the end-user, 4 references-bot descriptions di�ering in their level of abstraction
have been de�ned and prepackaged:detailed, medium, simple, and fast. Users can anyhow still
select among thes-bot subsystems the combination of approximations which best suits the
speci�c research goals they intend to pursue. A brief description of each reference model is
outlined in the following.

Detailed s-bot This robot model is a quite faithful replica of the real s-bot: all its mechanical
parts are reproduced with all the degrees of freedom required (Figure 18 on the left). This
model replicates in details the geometry of the real hardware (Figure 19) as well as the
masses, centre of masses, torques, accelerations, and speeds.

The detailed model comprises four mechanical modules: treels, turret, rigid gripper, and

exible gripper. Its main characteristics are reported below.

� A detailed chassis description comprehensive of 4 ground IRsensors (2 at the bottom,
1 in front and 1 on the back).

� Six teethed wheels, three on each side, with the two middle ones slightly larger and
located outward as in the hardwares-bot.

� A detailed turret representation.

� A rigid gripper hinged on the front of the turret and endowed with two teethed jaws.

� A 
exible gripper attached through three hinges to the s-bot's body and endowed with
two teethed jaws.

Although the detailed model closely matches thes-bot hardware, it lacks the caterpillar-like
rubber teethed band joining the inner wheels of each track. The simulation of this track
was computationally very expensive and provided only a negligible gain in the realism of
simulating the real hardware.

Figure 18. Detailed (�rst from left), medium (second from left), simple (third from left), and fast (fourth from
left) s-bot models. Fast and simple models have both 2 wheels and a very simpli�ed rotational tur ret. The medium
model di�ers from the detailed model only by having 6 simpli�ed spherical wheels, a simpli� ed rigid gripper and
lacking the 
exible side arm.
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Figure 19. Mechanical diagram of a real s-bot.

Medium s-bot This s-bot model is shaped with a detailed description of the treels system,
although the 6 wheels are in this case de�ned as simple spheres (Figure 18, second from the
left). The turret is de�ned in full detail but without the pre sence of the 
exible gripper. A
coarse representation of the rigid gripper (a hinged box) gives this model the possibility of
realizing limited on/o� connections to other s-bots. The turret model implements all main
hardware sensors such as infrared, sound, camera, and lightsensors.

This model is still reasonably e�cient and therefore it allo ws to develop distributed con-
trollers over quite large groups of units on smooth planes aswell as on uneven terrains. The
simpli�ed rigid gripper and the absence of the 
exible gripp er, however, limit its use just to
single s-bot missions or to collective tasks in groups ofs-bots with simple rigid connections.

Simple s-bot This model is a minimalistic abstraction of the most salient characteristics iden-
tifying one s-bot (Figure 18, third from the left). It has a traction system mad e of one
sphere with two spherically shaped wheels hinged to its sides, and a turret made of a bare
cylinder. Caster wheels are added to give mechanical stability to the model. Mass and size
are roughly the same as those of the reals-bot.

This is a model designed to test and validate control algorithms, developed using thefast
model, in environment with real gravity pull.

The simple model, bene�tting from its minimal structure and therefore from its high sim-
ulation speed, is very useful for investigating computation intensive distributed control
policies spread over a large number of units (e.g. genetic algorithms) in environments using
the real gravity pull. However, because this model implies real masses and forces, it is
not possible to run simulations using large time steps without incurring in problems of
instability. Furthermore, its applicability is strongly l imited to environments with very
limited roughness: when this constraint ceases to hold, a more re�ned level of detail is
required.
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Table 2. Comparison of features amongdetailed, medium, simple, and
fast s-bot simulation models. Yes and no respectively indicate the
presence or absence of a particular feature in the model.

Model Detailed Medium Simple Fast 1

driving wheels # 6 6 2 2

IR proximity sensors yes yes yes2 yes2

ground sensors yes yes no no

camera yes yes no no

sound module yes yes yes2 yes2

rigid gripper yes yes4 no3 no3


exible gripper yes no no no

dynamical bodies # 23 8 6 6

typical RTM 3 31.8 94.7 9601

time step 10 10 10 1001

1) Measurement taken with 1/50th of gravity and 1/20th of mas s.
2) Using sample-based look-up table.
3) No physical gripper model: connections are possible using virtual links.
4) Coarse version, i.e. sticking box.

Fast s-bot This model is a scaled down version of thesimple model with the same modelling
structure (Figure 18, �rst from the right). However, its lin ear dimensions are halved and its
mass is 1/20th with respect to the simple model.

It is meant for simple tests in environments with 1/50th of th e real gravity pull. The
reduced masses and unrealistic gravity enables to use a large time step without getting
unstable simulations, at least in 
at environments. This possibility allows to increase the
simulation speed up to 10 times, although the use of this abstraction on terrains modeled
as mesh surfaces may lead to unstable simulations if the timestep is too big (> 10ms).

To establish how computationally heavy each of the 4 models described above is, a performance
evaluation experiment was set. This consisted simply in loading and using ones-bot at each
di�erent abstraction level on a horizontal plane. The performance result for each type of model
is presented here in terms of itsReal Time Multiplier (RTM) value which refers to how fast real
time can be simulated. Table2 summarizes each model characteristics and gives a typical RTM
value for each of them. RTM values were obtained running the tests on a dual 3.06GHz Xeon
PC with one nVidia QuadroFx 1000 graphics card.

4.3.3. Dynamic Model Switching. Using the hierarchical abstraction levels introduced
above, it has been implemented in the simulator a way to change the useds-bot representation
during simulation (Pettinaro et al., 2003). The availabili ty of such a feature allows a user, for
example, to start a simulation with the simplest abstraction level for ones-bot when the terrain
onto which it moves is 
at and to switch to a more re�ned model r epresentation when the
environment or the interaction among s-bots require a more detailed treatment. Dynamic model
changing allowsswarmbot3dto increase simulation speed by introducing complexity only when
it is needed.
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Table 3. Sensors types and their implementations in the simulation environment.
Each sensor may have multiple implementations which can be chosen by the user.

S-Bot Sensors Implementations

proximity sensor
Sample table based

Ray tracing

ground sensor Ray tracing

sound
Instant on-o� with spatial decaying intensity

Sound wave propagation with spatial decaying intensity

speed sensor Standard library function

torque sensor Standard library function

inclinometer Comparison with the absolute XZ plane

light sensor Ray tracing based with shadowing

camera
Abstract camera using high level objects

Low-level �sh-eye view

This feature, however, assumes that all representation models arecompatiblewith each other,
that is, all models show the same behaviour when a particularrobot command is issued. It is
therefore important to adjust each model so that speed, mass, and geometry are calibrated to
ensure compatibility, even if they di�er in representation detail. For this reason, it was developed
an extension of the simple model named basic model possessing a simple on/o� connecting
device, which was previously available just for themedium model, and a ray traced model of
the IR sensors (see Section 4.4).

Thanks to this model changing mechanism, users can use thebasic model when the terrain
is 
at, change to the medium model when the terrain gets rough or change to thedetailed
model when the 
exible arm is needed. Currently, such a modelswitching has to be carried out
manually, however work is in progress for investigating ways for automating this feature, so to
leave to the simulator the decision on when changing the abstraction level.

4.4. Sensor Modeling

Real s-bots are equipped with several types of sensors which are read by the control program
running on each s-bot. Swarmbot3dimplements 8 types of sensors matching those available on
the real units. Some sensors (such as the speed and torque sensors) have been implemented
using standard library functions of the underlying physics engine, while others needed imple-
mentation and calibration with the real sensors. Table 3 summarizes the virtual sensors and
their implementation currently available in swarmbot3d.

The infrared sensors used by the proximity sensor and the ground sensors are simulated using
ray-tracing by probing the sensor vicinity with 5 rays (1 central and 4 peripheral) within the
sensing cone of each virtual sensor. The 5 rays detect any intersection of nearby objects and
compute an average distance value which is subsequently converted to an integer sensor response.
The mapping function has been obtained by linear regressionof the experimental values.
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Table 4. Simulator performance for di�erent abstraction models. T he numbers represent real time
multipliers , i.e., the ratio between simulated real time and simulation time ( the higher, the better).

Model
Disconnected S-Bots (smooth plane) Conn. S-Bots Disconn. S-Bots

1 2 5 10 20 40 5 on smooth plane 5 on rough terrain

Fast1 960 490 200 96 43.3 17.6 88.1 147

Simple 94.7 49 20 9.6 4.3 1.8 8.5 14.9

Medium 31.8 15 4.7 2 0.7 0.1 2.2 2.4

Detailed 3 1.4 0.5 0.2 0.09 0.04 0.2 0.4

1) Measurements taken with a time step of 100 ms and 1/50th of t he real gravity pull.

The light sensors are modelled in the simulator by summing upcontributions of all known light
sources weighted by their inverse squared distance and somescaling factor. At present, light
shadowing is not implemented. Sound sensors are implemented in a similar way, disregarding
also in this case shadowing.

4.5. Performance Evaluations of the Di�erent Abstraction M odels.
A crucial point concerning swarmbot3dis how it performs with respect to an increasing number
of units populating its world and for di�erent abstraction m odels.

To evaluate the computational load, the 4 model abstractions introduced in Section 4.3.2. were
examined. The experimental test was carried out by loading into the simulator an increasing
number of disconnecteds-bots of the same kind. The simulator performance was quanti�ed by
checking, as done with the singles-bot, the real time multiplier (RTM) value. The hardware em-
ployed in this performance evaluation was a dual 3.06GHz Xeon PC with one nVidia QuadroFx
1000 graphics card.

The readings obtained for a smooth plane terrain are reported in Table 4, where, for comparison
purposes, data is shown also for 5 connecteds-botson a plane and for 5 disconnecteds-botson a
rough terrain. All measurements were taken using a time-step of 10 ms, except for thefast model,
that, because of the large step used with it, showed instability when used on rough terrain.

5. Comparisons between Simulated and Real S-bot

This section presents a number of experiments conducted to compare the mechanical behaviour
of the various simulated s-bot models with respect to the reals-bot. A good correspondence was
found between thedetailed model and the reals-bot in all cases. Themedium model was able to
approximate acceptably well the detailed one in many situations, whereas thefast and simple
models were su�cient only in certain simple environments.

5.1. Motion Comparison

This experiment compares how di�erent models di�er during forward linear motion on terrains
with di�erent levels of roughness. To do so, each simulationmodel was placed randomly on a
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Figure 20. Comparison of linear motion errors of the three s-bot simulation models with respect to di�erent
terrain roughness. The HR values correspond to descriptive values: 0 for 
at, 1 for almost 
at, 2 for minimally
rough, 4 for little rough, 8 for mildly rough, 16 for rough, an d 32 for very rough.

terrain and then assigned a random heading. The terrain roughness was controlled within the
simulator by specifying a height range (HR) parameter. Given the reduced size of thefast model,
the terrain used for that s-bot abstraction was also scaled down by half its original size.

Figure 20 shows the motion errors which are obtained by letting each s-bot model run at
medium speed (15.24 cm/s) for 10 seconds. The vertical axis plots the projection of the travelled
distance onto the randomly selected initial direction. Depending on the terrain roughness this
distance decreases because thes-bot is not able to retain a straight course. The small di�erences
in distance on 
at terrain are caused by calibration errors of the velocity due to di�erences in
the wheel diameters among the variouss-bot.

Figure 20 shows that the rough terrain motion of the medium model closely follows the
behaviour of the detailed one: the constant o�set is due to di�erences in wheel size (see above).
Both simple and fast models quickly fail to retain linear motion even on minimally rough
terrains. Since the detailed model replicates quite closely the behaviour observed on the real
robot, this suggests that also themedium one can reasonably approximate it, at least as far as
pure locomotion on rough terrain is concerned. Thefast and simple models therefore are not
suitable for experiments involving very rough terrain.

5.2. Passing a Gap

In rough terrain situations, it may be the case that one s-bot or a group of s-bots have to pass
gaps or holes. We ran therefore an experiment to study hows-botsbehave in these situations. To
quantify the behaviour of the di�erent simulation models wi th respect to the reals-bot, two planes
were placed close to each other with a variable gap (Figure 21). We observed how each model
reacted to changes in the size of the gap and compared the results with what observed using one
real s-bot. This experiment was carried out for ones-bot and then repeated for connecteds-bots.
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Figure 21. From left to right: The 3 s-bot models while traversing a gap of 40 mm and 60 mm, respectively.

5.2.1. Single S-bot . The results of the experiment described above are reported in Table 5.
Each table entry corresponds to the modal value of 12 observations. All tests were carried out
by using a low speed of 2.8 cm/s.

By observing the table, we see that thesimple model can cope with gaps up to 40 mm, starts
having trouble with gaps of 45 mm, and gets stuck with gaps of 50 mm or wider. The medium
and detailed models, instead, do not have problems with gaps up to 40 mm. Beyond this size, the
presence of the teeth on the wheels of thedetailed s-botmakes a di�erence. This feature, in fact,
by acting as a surrogate of caterpillar tracks, mimics remarkably well the behaviour observed
on the real s-bot which gets also stuck with gaps of 55{57 mm.

The fast model was tested in a separate environment with low gravity (1/50th of the normal
one) and with a high time step value (100 ms). This model overcomes gaps of 60 mm and behaves
therefore similarly to the detailed model, although it moves in an unreal environment. Thus, it
can be used as a rough approximation of the reals-bot functional behaviour.

5.2.2. Connected S-bots . While for a single s-bot the maximum traversable gap width is
around 60 mm, a connected structure is expected to pass widergaps, even larger than the

Table 5. Gap experiment for a single s-bot. The s-bot had to maneuver across a gap of di�erent
width. Each row corresponds to a certain gap width and report s the results.

Width (mm) Fast 1;2 Simple Medium Detailed Real

40 overcome overcome overcome overcome overcome

45 overcome
overcome (70%) overcome (90%)

overcome overcome
stuck(40%) stuck(10%)

50 overcome stuck stuck overcome overcome

57 overcome stuck stuck
overcome (50%)

stuck
stuck(50%)

60 overcome stuck stuck stuck stuck

65 stuck stuck stuck stuck stuck

1) Observations taken separately with 1/50th of gravity and 1/20th of mass.
2) Since the fast model is half the size of the simple model, the gaps' widths should be divided by 2 for having a
correct comparison.
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Figure 22. Gap traversal sequence using two s-bots. The same sequence is reported in the left column for the
simulated s-bots and in the right column for the real s-bots. From top to bottom: (1) the �rst s-bot in front of the
gap calls for help, (2) the second s-bot connects with the rigid gripper, (3) both s-bots pass the 70 mm gap, (4)
the second s-bot releases its gripper. A movie of the experiment is available at www.swarm-bots.org .

diameter of a singles-bot (about 116 mm). We ran an experiment using two connecteds-botsboth
in simulation and in the real world (Figure 22). The gap passing experiment was repeated, only
in simulation, using chains of three and four robots. Table6 summarizes the observed maximum
gap widths for successful traversals. Each table entry for the simulated s-bot corresponds to the
modal value of 12 observations.
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Figure 23. Equivalent behaviour of simulated and real s-bot with respect to a step size of 32 mm.

5.3. Climbing a Step

When navigating on rough terrain one s-bot has to confront itself with all sorts of hindrances.
Some may be overcome by getting around them, some others can instead be overcome by climbing
over. Climbing a step is one of these latter and it is important to evaluate how s-bots behave
when they have to face such an obstacle. In order to do so, two experiments were carried out:
one using a singles-bot and one using twos-bots in a connected con�guration. The capability of
overcoming a step was in both cases quanti�ed by progressively varying its height with respect
to the ground.

5.3.1. Single S-bot . In this experiment one s-bot, detailed model, placed on the ground
started to move towards a step. The experiment was performedwith the s-bot moving both
forward and backward. The height of the step was varied in intervals of 1 mm.

It was observed that the maximum step height which a singledetailed s-botwas able to cope
with was 15 mm when moving backward and 23 mm when moving forward (Table 7). Each table
entry for the simulated s-bot is the outcome of 12 observations. The di�erence between the

Table 6. Gap traversal experiment using swarm-
bot3d simulation. The values represent observed
maximum gap width for successful traversal for
di�erent numbers of connected s-bots.

S-bots #
Gap Width (mm)

Detailed Real

1 57 57

2 100 100

3 190 not available

4 240 not available



Swarm-Bot: a New Distributed Robotic Concept 31

forward and backward behaviours both in the simulateds-bot and in the real one is due to the
center of mass of the turret which is 40 mm o� centered towardsthe gripper.

Figure 23 shows that with a step of 32 mm, which is the height atwhich two connected robot
can pass (see next section), one singles-bot going backward topples over both in the simulated
world and in reality.

5.3.2. Connected S-bots . This experiment was set by letting a pair of simulated s-bots,
detailed model, �rst connect and then navigate backward towards a step. By varying the height
of the step, it was observed that the two robots were able to pass steps up to 32 mm, in accordance
with what experienced with the real s-bot.

Figure 24 shows four stages in passing the limit step of 32 mm.First, the two s-bots approach
the step in backward formation. Second, as soon as the �rst robot senses the step with its rear
ground sensor, it starts lifting itself using its connectedrigid gripper. During traversal, the robot
bends its rigid gripper in the opposite direction (downward) pushing itself up. Finally, the �rst
robot continues its backward motion and pulls in this way the second one over the step to
complete the procedure.

6. Conclusions

The work reported in this paper presented a new robot concept, called swarm-bot. Such a
concept shows to possess the three major characteristics needed for rough terrain exploration:
robustness, versatility, and all terrain navigation. These characteristics were used to discuss how
the swarm-bot concept compares with similar existing systems.

A swarm-bot, with its self-assembling capability added on top of fully autonomous robots,
opens up a new research �eld situated between self-recon�gurable and collective robotics. The
concept combines hardware versatility found in self-recon�gurable robots with control versatility
found in distributed control for collective robotics. This fundamental property of a swarm-bot
plays a key role in robotic operations to be performed on rough terrains and it allows to carry
out di�erent tasks while facing complex and harsh environments usually found in exploration
missions.

A second and fundamental property of aswarm-bot is robustness, provided by distributed
hardware and control. This feature is also essential for exploration operation where the unknown
and unstable environment can cause loss of robotic units.

Table 7. Maximum step climbing height for one
s-bot moving backward (bw) and forward (fw).

Step (mm)
Detailed S-bot Real S-bot

bw fw bw fw

� 15 pass pass pass pass

16 fail pass fail pass

23 fail pass fail pass

24 fail fail fail fail
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Figure 24. From left to right: the di�erent phases of the step passing fo r the limit step of 32 mm. The �rst four
pictures refer to the simulated s-bot and the last four refer to the actual s-bots. A movie of the experiment is
available at www.swarm-bots.org .

The feasibility of the concept has been shown by presenting the construction of the �rst physical
prototype as well as of a 3D dynamics simulation package (swarmbot3d) complementing it. The
usefulness of this software package has been shown for accurately simulating both the kinematics
and the dynamics of a singles-bot as well as of an entireswarm-bot, for evaluating hardware
design options for di�erent robot components, for designing swarm-bot control experiments in
3D worlds, and for investigating distributed control algor ithms.

The simulation environment features modularity, multi-le vel modeling, and dynamic model
switching. S-bots are de�ned in terms of modules with each modules expressed atdi�erent
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levels of detail. These characteristics make simulateds-bots fully customizable. Dynamic model
switching is unique in its kind. Such a feature gives to the simulator the power of reducing
the computational cost while keeping the accuracy of predicting a swarm-bot behaviour within
acceptable limits.
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