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1. Introduction 
 
Today the study of animal and human behavior can rely also on a new approach --- the 
adaptive behavior approach --- that study the mechanisms underlying these phenomena and 
the way in which they originate and change by synthesizing adaptive artificial embodied 
agents (i.e. robots). Indeed, although in many cases this approach has been undertaken to 
solve engineering problems by taking inspiration from nature, it is clear that contributions can 
also be made in the opposite directions.  

More precisely we have at our disposal a new family of approaches that vary with respect 
to (at least) three dimensions: (i) the level of embodiment and situatedness, (ii) the time scale 
of the phenomena under study, (iii) the level of bio-inspiration.  

The first dimension concerns the extent to which the properties of the agents’ body 
(dimension, mass, size, inertia, etc.) and the consequences of the fact that agents are situated 
in a physical and social world (the fact that agents have egocentric and partial information 
about the environment, the fact that agents’ actions affect agents’ sensory experiences, etc.) 
are taken into account. At one extreme of the first dimension we have weakly embodied 
models that take into account few selected aspects of the agent/environment interactions, such 
as for example the probability that an agent chooses the left or the right branch of a path on 
the basis of the current pheromone distribution along the two paths (Dussutour et al, 2004) 
without modeling in detail the agents’ behavior (e.g. the sensory states experienced by the 
agents over time, the actual positions and orientations of the agents, the effects of the actions 
performed on the agents’ sensors). On the other extreme of this dimension, we have robotic 
models or realistic robotic simulations, in which agents are constituted by physical agents that 
are situated in a physical environment, in which both the characteristics of the agents and of 
the environment are modeled in detail, and in which agent/environment interactions are 
subjected to the laws of physics (e.g. the experiments reviewed in this paper). 

The second dimension concerns whether one attempts to model and study the 
evolutionary and/or developmental processes that give rise to a given agent with certain 
characteristics and skills or only an agent at a certain stage of its evolutionary-developmental 
process. In the latter case, the goal of the model is only to identify and study the key neural-
physiological properties at the basis of the behavior (see for example Horchler et al, 2004). In 
the former case, instead, the objective also includes the study of the characteristics of the 
evolutionary-developmental process that can give rise to an agent with certain properties and 
skills and the way in which such agent is able to adapt to variation of the task/environment 
(see the experiment reviewed in this paper for an example).  

The third and final aspect concerns the level of detail considered in the model. In some 
works the artificial agent represents a (simplified) model of an organism of a specific species 
and thus is designed by taking into consideration the specific characteristic of the body, 
and/or sensory-motor system, and/or nervous system of that specific species (see for example 
Ijspeert et al., 2007). In other works the artificial agent represents a model of a generic 
organism that shares general properties with many different natural organisms but does not 
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correspond in detail to any specific species (for an example see the experiments reviewed in 
this paper). 

In general terms, variations along the three dimensions described above have advantages 
and drawbacks. For instance, the use of models that are simplified with respect to the 
embodiment/situated dimension and that do not take into account how agents’ skills change 
phylogenetically and/or ontogenetically prevents analysis of the implications of these two 
important aspects but, on the other hand, might allow the use of analytic techniques that 
cannot be used in other type of models. Similarly, strong bio-inspired models enable the 
possibility to understand the implications of the detailed characteristics of the agents’ body 
and agent/environment interactions but, on the other hand, typically prevent the possibility to 
study also the role of the evolutionary/developmental process.  

The experiments reviewed in this paper study predator/prey behaviors by using robots or 
realistic robotic simulations that develop their skills through a competitive evolutionary 
process. This choice of using robots is motivated by the fact that, as we will see, the detailed 
characteristics of the robots’ body and the characteristics and limitation of their sensory 
systems  strongly affect the co-evolutionary dynamics and the behavior of the evolved agents. 
The choice of modeling the process through which the agent develop their skill by adapting to 
their physical and social task is motivated by the fact that competitive co-evolutionary 
dynamics are particularly interesting and by the fact that, as we will see, the behavior of 
predator and prey agents can hardly be understood without modeling the way in which the 
behavior of the two species co-adapted over time. The agents involved in the experiments, 
however, do not attempt to model two specific types of predator and prey organisms but 
rather two generic species that compete against each other. The agents thus are designed so to 
share general key properties with natural organisms (having a body, being provided with 
limited and local sensors, possessing a nervous system constituted by interconnected neural-
like units). More detailed characteristics have been chosen arbitrarily and/or by taking into 
consideration criteria such as simplicity and technological feasibility. This choice has been 
motivated by an interest in the general aspects that characterized predator-prey co-evolution 
rather than by an interest in a specific case study and by the difficulty of combining a strong 
bio-inspired approach with an evolutionary/developmental approach.  

The study of competitive co-evolution through the synthesis of evolving agents started 
almost 30 years ago (Koza, 1991, 1992; Reynolds, 1994; Miller and Cliff, 1994; Cliff and 
Miller, 1995, 1996). In this article we review the first experiments carried out by using 
simulated and real robot that were performed by Dario Floreano, Francesco Mondada and 
myself a few years later (Floreano and Nolfi, 1997; Nolfi and Floreano, 1998; Floreano, 
Nolfi, and Mondada, 1998) as well as other related works (Buason and Ziemke, 2003; Nelson, 
Grant, and Henderson, 2004; Buason, Bergfeldt & Ziemke, 2005) and we briefly discuss the 
implications of this research for behavioral and evolutionary biology and for robotics. For 
related research on competitive co-evolutionary algorithms see also Rosin and Belew, 1997; 
Figici, 2004; Popovici, 2006; Bucci, 2007; Ebner, Watson and Alexander, 2010).   
 
2. Co-evolving predator and prey robots 
 
In the experiments reported in (Floreano and Nolfi, 1997; Nolfi and Floreano, 1998; Floreano, 
Nolfi and Mondada, 1998) two populations of predator and prey robots were evolved for the 
ability to catch prey and avoid being caught by predators, respectively. Each population was 
formed by 100 Khepera robots (Mondada, Franzi, and Ienne, 1993) with identical 
morphological characteristics but different neural controllers (Figure 1).  

Both the predator and prey robots were equipped with eight distance sensors (six on one 
side and two on the other side) able to detect obstacles up to a distance of about 4cm. 
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However, prey and predator robots differed in three ways. First, the maximum speed of the 
prey was twice that of the predator. Second, the predator had an additional vision system with 
a 36o field of view. Third, the prey had a black stick that could be visually perceived by the 
predator. These differences allowed predators to detect the prey at a distance of up to 100 cm, 
whereas prey could only infer the presence of nearby predator through its infrared sensors. On 
the other hand, the prey could outrun the predator. 

          
Figure 1. Left. Prey and predators robots (left and right, respectively). Center: positions of the sensors. Right. 
robots’ neural controllers. 
 
Each robot was equipped with a neural controller with 8 sensory neurons that encode the state 
of the infrared sensors, 5 sensory neurons that encode the current state of the linear camera (in 
the case of predators only), and 2 motor neurons that encode the desired speed of the two 
motors controlling the two corresponding wheels. The motor neurons receive connections 
from the sensory neurons and from themselves (i.e. they have recurrent connections). The 
architecture of the neural controllers is fixed. The strength of the connection weights, instead, 
are encoded into the genome of the populations and evolved (Nolfi and Floreano, 2000).  

The initial genome consists of two populations of 100 genotypes. Each genotype is 
formed by a randomly generated string of numbers that encode the connection weights of a 
neural controller that is embodied in a corresponding robot. Each robot is allowed to interact 
with the environment and with a competitor for 10 trials lasting 50s each. To improve co-
evolutionary stability (see Nolfi and Floreano, 1998), each individual was tested against the 
best competitors of the ten previous generations. The fitness of the predator and of the prey is 
computed by calculating the percentage of trials in which they are able to catch or to escape 
their opponent, respectively (to catch a prey the predator should reach and touch it with its 
body, to escape a predator the prey should avoid being touched by the predator). After the 
fitness of all individuals has been calculated (i.e. after all individuals had the opportunity to 
interact with their opponent for 10 trials), the best 20 genotypes of each population are 
allowed to reproduce by generating 5 offspring each (i.e. 5 copies with 2% of their genes 
replaced with randomly selected values).  This process of evaluation, selective reproduction, 
and variation is repeated for 100 generations. For more details, see Nolfi and Floreano (2008). 

Ten independent replicates of 100 generations were carried out in physics-based 
computer simulations and three replicates of 25 generations were conducted with real robots 
(Floreano, Nolfi & Mondada, 1998). In another series of experiments, the robots were also 
able to adapt their connection weights while they interacted with the environment, as 
described below (Floreano and Nolfi, 1997b). 

 
2.1 Co-evolutionary dynamic 
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As hypothesized by evolutionary biologists (Van Valen, 1973; Dawkins and Krebs, 1979) the 
analysis of the evolving robots indicates that competitive co-evolution produces a never-
ending evolution of strategies and counterstrategies in the two competing populations. For 
example, by visually inspecting the behavior of the best individual of successive generations 
in a typical experiments, we can see that: (i) after a few generations, the prey developed fast 
motion in the environment whereas the predators visually tracked them so as to intercept their 
trajectories, (ii) some generations later, the predators refine their strategy and become very 
efficient in catching the prey, (iii) the prey then evolve a new strategy that consists of waiting 
for the predator and moving backward when the predator approaches them, (iv) the predators 
then change their strategy so to approach the prey from a side in order to exploit the low 
resolution of the prey sensory system on part of its body, (v) prey then resume on a fast 
moving strategy that this time is realized by coasting the walls, (vi) the predators then develop 
a “spider” strategy that consists in backing against one of the walls and waiting for the fast-
moving prey whose sensors could not detect the predator sufficiently early to avoid it because 
its body reflected less infrared light than the white walls, (vii) the prey then display a novel 
variation of the wait-and-avoid strategy where they quickly rotated in place, which reduced 
the probability of being approached from the sides without sensors. The analysis ends here 
since the experiment is terminated after a certain number of generations, but the strategy 
displayed by the two population would keep changing if the evolutionary process is continued 
(see Floreano and Nolfi, 1997a, for more details). Overall, these results demonstrate that 
competitive coevolution can generate a large variety of sophisticated behavioral strategies.  

Further experiments performed by using this experimental scenario demonstrated how the 
ever-changing challenge generated by the competing species enable the evolution of highly 
effective solutions that would not be discovered otherwise (Nolfi and Floreano, 1998). In 
particular, we observed that the probability to evolve predators able to catch a high 
performing prey was higher in the experiment in which predator and prey co-evolved than in 
control experiments in which the predators evolved against non-varying prey (even if the prey 
against which their performance is evaluated is the same that they faced during their 
evolutionary process). See Nolfi and Floreano (1998) for more details.   

The fact that the strategies of the co-evolving species keep changing without reaching a 
stable state, however, does not necessarily imply that the efficacy of the solutions keep 
increasing throughout evolution. In fact, the co-evolutionary process might enter in a limit 
cycle dynamic in which the same type of strategies are abandoned and rediscovered over and 
over again (Nolfi and Floreano, 1998). Suppose for example that at a certain evolutionary 
stage population A adopts the strategy A1 that is effective against the strategy B1 currently 
adopted by population B (Figure 2). Imagine now that there is a strategy B2 (similar to B1) 
that is effective against the strategy  A1. This will create the adaptive condition for retaining 
the genetic variations that lead to strategy B2. Imagine now that there is a strategy A2 (similar 
to A1) that is effective against the strategy SB2. Population B will sooner or later abandon 
strategy SA1 and will discover strategy SA2. Finally imagine that the previously discovered 
strategy SB1 is effective against strategy SA2. Population B will come back to strategy SB1. 
At this point also population A will come back to strategy A1 (because, as explained above, it 
is effective against strategy B1). Overall this implies that, after a certain number of 
generations, the two populations might re-discover the same strategies they were displaying 
before and that the evolutionary dynamics might enter into a limit cycle in which the same 
types of  strategies are abandoned and rediscovered over and over again. The analysis of the 
behavior exhibited by the robot during these evolutionary experiments confirms that this is 
indeed what happens. Prey tend to rediscover, refine, and then abandon over and over again 
strategies belonging to the following two families: B1: moving fast by avoiding obstacles (that 
is effective against strategy A2 but not against strategy A1), and B2: wait for the predator and 
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avoid it with sharp movements when it comes nearby (that is effective against strategy A1 but 
not A2). Predators, on the other hand, tend to discover, refine, abandon, and then rediscover 
over and over again the strategies belonging to the following two families: SA1: moving 
toward the prey by trying to anticipate it (that is effective advantage against strategy B2 but 
not B1), and A2: stay still by waiting the right moment to move toward the prey by trying to 
anticipate its trajectory (that provides an advantage against strategy B1 but not against strategy 
B2). 
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Figure 2. The same strategies (A1 and A2 in population A) and (B1 and B2 in population B) may be selected over 
and over again throughout generations as is shown in the right hand side of the figure if the interaction between 
them looks like what is represented on the left side of the Figure. In this example the repeated cycle includes 4 
different combinations of strategies.  
 
2.2 Change, innovations, and open-ended evolution 
 
In competitive co-evolution, progresses in one species often creates challenges for the other 
species and vice versa. The fact that the adaptive task faced by evolving individuals is initially 
simple, when the competing populations have limited capabilities, and progressively increases 
in complexity, when the capabilities of the individuals expands, leads to a form of incremental 
evolutionary process (see also Rosin and Belew 1997) that might facilitate the development of 
complex skills (thanks to the possibility to re-use previously acquired skills). This potential 
advantage is indeed confirmed by the experimental data reviewed in the previous section that 
demonstrate that co-evolved predator robots outperform predators evolved against fixed prey.  

In principle, as hypothesized by Dawkins and Krebs (1979), the continuation of this 
process might lead an ever increasing level of skills/abilities analogous to that observed in an 
“arms race”. If this hypothesis is true, competitive co-evolution might represent an important 
drive for change and innovation in evolution (Futuyama & Slatkin, 1983). As we have 
demonstrated in the previous section, however, the data collected on evolving robots indicates 
that co-evolutionary phases leading to real innovations do not last forever since the 
evolutionary dynamic at a certain point enters into a limit cycle in which approximately the 
same strategies and skills are re-discovered, refined, and abandoned over and over again.  

One interesting question, in this respect, is which are the factors that might impact on the 
length of these innovation phases and that might reduce the tendency to fall into limit cycle 
dynamics? Also in this case, the data collected by evolving robots, provide useful indications. 

By varying the experimental conditions we observed that certain factors might affect the 
length of the innovation phases and the complexity of the evolved solutions. 

One first factor is constituted by the characteristics of the robots’ body and sensory-motor 
system. Indeed, by running a new set of experiments in which the sensory system of the prey 
was extended (i.e. in which prey were provided with a camera with a view angle of 240o) we 
observed that the evolutionary process leads to much longer innovation phases and to more 
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complex behaviors (Nolfi and Floreano, 1988). Interestingly, by running a series of 
experiments with simulated predator and prey agents in which also the characteristics of the 
agents’ sensory system was encoded in the genotype and subjected to variation, Cliff and 
Miller (1996) observed that predators usually evolve eyes on the front of their bodies (like 
cheetahs) while prey usually evolved eyes pointing sideways or even backward (like 
gazelles). Similarly, in a series of experiments performed by using the same experimental 
scenario described in section 2.1 but in which the view angle and range of the robots’ sensory 
system was subjected to variations, Buason and Ziemke (2003) observed that predators 
evolved a sensory system with a relatively narrow view angle and long view range while prey 
evolved a sensory system with wide view angle and shorter view range (see also Buason, 
Bergfeldt, and Ziemke, 2005). Overall these results indicate that the possibility to subject also 
the characteristics of the robots’ body and sensory-motor system to variations represents a 
crucial prerequisite for allowing the synthesis of more effective and general solutions.  

A second factor is constituted by the ability of the agents to adapt ontogenetically to their 
task/environment. Indeed, by running a new set of experiments, in which the robots are 
allowed to vary their connection weights online (on the basis of hebbian learning rules) while 
they interact with their competitors we observed the emergence of predators able to deal with 
a larger variety of prey by adapting online to their current competitor (Floreano and Nolfi, 
1997b). This is realized, for example, by initially displaying a strategy that consists in 
“waiting for the right moment to anticipate the prey” which is then transformed into a “move 
toward prey” strategy when the prey tend to exhibit a “wait for the predator and then escape” 
behavior. This ability to display multiple strategies and to select the right strategy on the basis 
of the behaviors of the competitor allows evolving robots to cope with evolutionary variations 
of the competitor behavior thus reducing the tendency of the competitor population to try to 
gain an advantage by keep changing strategy. This in turn leads to an incremental 
evolutionary process in which the new skills are added to the previously developed skills that 
tend to be preserved. This results indicates that the possibility to adapt at a shorter time rate 
with respect to genetic evolution might represent a second import pre-requisite for allowing 
the synthesis of more effective and general solutions.  

Finally, another important aspect is constituted by the richness of the task/environment 
that can be increased, for example, by including in the environment different types of objects 
(Nolfi and Floreano, 1988; Nelson, Grant, and Henderson, 2004), by studying scenarios with 
multiple predators or prey (Nelson, Grant, and Henderson, 2004), and by introducing the need 
to face additional adaptive needs such as for example foraging and saving energy. Indeed, the 
richness of the task/environment, together with the other two factors mentioned above, 
represent a crucial prerequisite for establishing a truly open-ended process in which evolution 
keeps producing changes and innovations by never entering in a stable state or in a limit cycle 
dynamics. 
 
3. Implications for Robotics 
  
Pursuit and evasion behavior arising from predator prey interactions does not only represent 
one of the most common and challenging problems for natural organisms but also constitutes 
a interesting and challenging setup for robotics (Miller and Cliff, 1994). Indeed the need to 
face highly dynamic, largely unpredictable, and hostile environments requires the 
development of fast, robust, and reliable solutions. Moreover mastering predator and prey 
competition, even in the relatively simple experimental scenarios described above, requires 
the development and display of a wide variety of behavioral and cognitive capabilities such us 
avoiding fixed and moving obstacles, exploring the environment, exhibiting goal directed 
navigation, integrating different type of sensory information, integrating sensory-motor 
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information over time, displaying sequential behaviors, coping with the temporary 
unavailability of crucial sensory information, arbitrating between different behaviors, 
anticipating events, adapting online to environment variations, as well as an ability to 
integrate all these capacities in a single system. For all these reasons predator-prey 
experimental scenarios represents an ideal test bed for robotics research.  
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