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Abstract
In order to study learning as an adaptive process it is necessary to take into
consideration the role of evolution which is the primary adaptive process. In addition,
learning should be studied in (artificial) organisms that live in an independent physical
environment in such a way that the input from the environment can be at least partially
controlled by the organisms' behavior. To explore these issues we used a genetic
algorithm to simulate the evolution of a population of neural networks each controlling
the behavior of a small mobile robot that must explore efficiently an environment
surrounded by walls. Since the environment changes from one generation to the next
each network must learn during its life to adapt to the particular environment it happens
to be born in. We found that evolved networks incorporate a genetically inherited
predisposition to learn that can be described as: (a) the presence of initial conditions
that tend to canalize learning in the right directions; (b) the tendency to behave in a way
that enhances the perceived differences between different environments and determines
input stimuli that facilitate the learning of adaptive changes, and (c) the ability to reach
desirable stable states.

1. The adaptive functions of learning in
evolution

From an evolutionary point of view learning
has at least three different adaptive functions
(cf. Miller and Todd, 1990): it can help and
guide evolution, it allows adaptation to
environmental changes too fast for genetic
change to be able to track them, and it makes it
possible to overcome the size limitations of the
genotype by exploiting the regularities of the
environment. (Learning can also be the basis of
cultural transmission and evolution. Cf. Boyd
and Richerson, 1985.)

That learning can affect the course of
evolution even if acquired characters are not
inherited was first claimed by Baldwin (1896)
and later elaborated by Waddington (1942).
More recently, Hinton and Nowlan (1987) have
provided a clear example of how learning can
guide evolution using a simulation model. By
considering an extreme case in which only a
single combination of "genes" has fitness and all
the other combinations are equally bad, the

authors show that only by adding a form of
learning during life (actually random changes in
the genes) evolution can discover the right
combination of genes. Once the right
combination is found by a particular individual,
the individual will be more likely to reproduce.
Even if the learned changes are not inherited, the
individual's offspring will inherit a combination
of genes which is more likely to be close to the
right combination and therefore they also will be
more likely to reproduce. On this way
characters discovered through learning tend to
be fixated in the genotype of individuals of
successive generations. In other words, learning
can provide an easier evolutionary path toward
co-adapted alleles and therefore can guide and
help evolution. Similar results have been
reported for more complex models that do not
have some of the simplifications of Hinton and
Nowlan's model (Ackley and Littman, 1991;
Gruau and Whitley, 1993; Nolfi et al., 1994a;
cf. also Parisi and Nolfi, 1995).

That learning allows organisms to adapt to
their environment is considered so obvious that
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learning is often studied in isolation from
natural selection, which appears to be the
primary adaptive process. In any case evolution
has the same function attributed to learning:
adaptation to the environment. Learning
supplements evolution in that it makes it
possible to adapt to changes in the environment
that are too fast for evolution to be able to track
them. By being sensitive to environmental
conditions that could not be anticipated by
evolution learning can incorporate these
conditions in the organism's behavior.

Finally, learning can use the regularities of
the environment to build more complex
phenotypes than would be possible only on the
basis of the information contained in the
genotype. Environmental regularities can be
detected at different levels of the developing
phenotype and they can affect the self-
organization of the phenotype's structure and
behavior. From this point of view learning
should be considered as part of development,
that is, of the more general process that maps
the genotype into the phenotype. Development is
a continuously active process which is sensitive
to environmental regularities and variabilities.
Learning can be defined as that part of
development which is most sensitive to
environmental influences while maturation tends
to be the name for the part which is less
sensitive to the environment and is more under
the control of the genetically inherited
information. (For a model of genotype-to-
phenotype mapping which is sensitive to
environmental influences, cf. Nolfi et al.,
1994b).

2. Learning in ecological conditions

In almost all research on learning in neural
networks, learning occurs in a void, or better, in
an "environment" that consists of the inputs and
teaching inputs arbitrarily decided by the
researcher. In contrast with this, to be
biologically plausible, a model of learning
should consider the fact that learning is a
process that arises in ecological conditions, i.e.,
through the interactions of the individual
organism with an independent external
environment (Parisi et al, 1990).

One of the most important consequences of
behaving and learning in an independent
environment is that the motor output of the
network partially determines the network's

sensory input. By acting on the environment the
individual can change either the environment
itself (e.g. it can modify the position of an object
in the environment) or it can change its own
physical relation to the environment (e.g. by
displacing its entire body or some parts of its
body, the individual can move to a different
environment or it can modify its perception of
the enviroment). Thus, sensory input in
ecological networks is a function of both the
independent properties of the environment and
the individual's behavior. It is the interaction
between what the network does and the external
environment that will decide which inputs are
seen by the network during learning, in what
order, with what frequency, etc.

Another consequence of an ecological
perspective on network learning is that it
becomes necessary to make it explicit how an
individual network can extract from the
environment the information necessary to adapt
to the environment. The environment does not
usually provide cues that directly indicate to the
individual how it should change in order to
produce more adapted behavior. Natural
selection is the only source of supervision for
many living systems. However, organisms
appear to be able to use environmental
information, made available to them through
their sensors, to trigger changes that make the
individual more adapted to the environment.

3. Evolving neural networks that adapt to a
changing environment

In this paper we will focus on one of the
three adaptive functions of learning described in
Section 1: the ability to adapt to fast
environmental changes that evolution alone
cannot track. To study this question we designed
and tested a simulation model in which a
population of neural networks, representing the
nervous systems of artificial creatures that
behave and learn in a physical (simulated)
environment, is evolved by using a form of the
genetic algorithm (Holland, 1975).

3.1 Background

The problem of adapting to fast
environmental changes has been addressed,
using a simulation model, by Todd and Miller
(1991) who set up a simulated "aquatic"
environment containing two distinct patches of
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plants. Each patch contains plants of two
different colors. In one patch the red plants are
"food" while the green plants are "poison". In
the other patch the colors are reversed. Red
plants are "poison" and green plants are "food".
During its entire lifetime a creature lives in one
of the two patches. However, the creature's
offspring could be placed at birth in the
alternative patch.

If a creature eats food, its fitness increases
but, if it ingests poison, its fitness is decreased
by a comparable amount. Creatures are
immobile but since food and poisonous elements
move past them, they must decide whether to
ingest the particular element sensed at any given
time or to ignore it. In addition, while food by
itself always smells "sweet" and poison always
smells "sour", turbulence in the water causes the
smell (but not the color) of nearby material to be
erroneously perceived with a given probability.

The behavior of Todd and Miller's creatures
is controlled by a neural network with just two
input (sensory) units, one for color and the other
for scent, and one output (motor) unit for
ingestion of nearby material. The genotype of
each creature directly specifies, for each
connection between the units, if the connection
is excitatory or inhibitory and if it is fixed or
learnable. Learning occurs via a Hebbian rule
according to which correlated firing of
connected units increases the strength of the
connection. Because what is poisonous (or what
is food) can change color from generation to
generation there is no advantage in inheriting
hardwired connections for poison avoidance (or
food ingestion) in terms of color. However,
within an individual's lifetime color serves as a
cue for discriminating between food and poison
which is more accurate than smell.

Todd and Miller report that in their
simulations evolved creatures tend to have a
hardwired (genetically specified) connection
between the smell sensory unit and the eating
motor unit and a learnable connection betwen
the color sensory unit and the eating unit. The
strength of this last connection is modified
during the life of the individual based on which
type of patch the individual ends up in at birth.
In other words, in their model learning turns out
to be evolutionarily adaptive. Moreover, they
show that adaptiveness of learning depends
critically on smell accuracy. (Smell accuracy
varies in various experimental conditions.) If
smell is 50% accurate (chance level), so that

food smells sweet half the time and sour the
other half, then no useful information can be
gained from the smell sensor. If smell accuracy
is 100%, there is no need to learn because
networks can efficiently rely on the smell sensor
and ignore color information. For smell
accuracies between 50% and 100% the authors
found that the evolutionary time needed to
evolve creatures that adapt during their lifetime
through learning is shortest for accuracy values
around 75% and it increases for both higher and
lower values - so that the overall effect is an U-
shaped function. This U-shaped curve emerges
as the result of a trade-off between the
phylogenetic pressure to evolve learning and the
ontogenetic usefulness of learning. If smell
accuracy is 75% learning is very useful for
adaptation and, therefore, there is a strong
pressure to evolve learning. In fact,  in this
conditon learning takes less time to evolve. With
smell accuracies going to either the 50% or
100% extremes, learning tends to become
increasingly less useful and there is less
pressure to evolve it. Therefore, the evolution of
learning takes progressively more time.

3.3 Our framework

We set up a simulation in which one of the
limitations of Todd and Miller's simulation is
removed. In their model creatures do not
displace themselves in the environment and they
do not move in any other way. The creatures
can only decide if they will eat or not eat the
currently sensed element but they cannot
influence the environment in any way. We want
to study the case in which creatures can move
and, as a consequence, they can partially
determine their sensory input with their motor
actions. Furthermore, since our creatures have
the possibility to learn by extracting useful
information from the environment, they can also
determine, by acting on the environment, their
learning experiences and the type of feedback
they receive from the environment.

Our goal was to develop a creature which is
able to reach a target area containing food
included in its environment. The entire
environment is a 60x20 cm arena surrounded by
walls. The target area is a circle of 2 cm of
diameter and is positioned in a randomly chosen
location within the environment. The creature
cannot perceive the target area but it must be
able to find the target area as quickly as
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possible. This implies that our creature should
explore the arena efficiently in order to increase
its chances to end up in the food area. At the
same time the creature should avoid hitting the
walls because this will cause it to get stuck into
the walls thereby losing all chances to reach the
target area.

We assume that the creature's body is
Khepera, a small mobile robot (Mondada et al.,
1993). Khepera has a cilindric body shape with
a diameter of 5.5 cm and a height of 3 cm, and
it weighs 70 g. It is supported by two wheels
that are controlled by two DC motors with an
incremental encoder (10 pulses per mm of
advancement of the robot) and that can move
both forward and backward. The robot is
provided with 8 infrared proximity sensors
which can detect obstacles at a distance that
depends on the obstacle's material and color.
The 8 sensors are positioned on the periphery of
Khepera's body as shown in Figure 1.

Figure 1. The picture on the left shows Khepera,
the miniature mobile robot. The picture on the right
shows how the 8 infrared sensors are distributed on
the robot's body.

We assume that our creatures can live in two
different types of environments: (a) an
environment with dark walls, and (b) an
environment with bright walls, i.e., walls that
reflect six times more light than the dark walls.
In the dark environment a sensor is activated
within a distance of about 1 cm from the wall
while in the light environment this distance is 6
cm. A creature should behave differently in the
two environments in order to explore as much as
possible of the entire arena without being stuck
into the walls. If it lives in environment (a) the
creature should move very carefully when
sensors are activated because it starts to
perceive the dark walls only in their close
proximity. In contrast, if it lives in environment
(b) a creature can perceive the walls from
farther away and therefore it should try to avoid
the walls only when the sensors are strongly
activated if it wants to explore the portion of the

arena which is close to the walls. Consider
however that the creatures do not know in which
type of environment they are going to live.
Creatures of even generations are placed in
environment (a) and creatures of odd
generations are placed in environment (b). The
creatures living in the bright environment (b)
tend to be more stimulated through their infrared
sensors than the creatures living in the dark
environment (a). Hence, our creatures may
adapt to the particular environment in which
they happen to live only if they can recognize
the environment and change in the appropriate
way through some form of learning.

3.2.1 The neural network

Our creatures are controlled by a
feedforward neural network consisting of just an
input and an output layer (no hidden units) (cf.
Figure 2). The input layer includes four units
that encode the activation level of Khepera's
sensors. To simplify the network the first input
unit encodes the average activation level of
sensors 1 and 2, the second unit of sensors 3 and
4, etc. (cf. Figure 1). Hence, the network has
four receptors: front, back, left, and right. These
four input units are connected to four output
units. The first two output units represent the
two motors of Khepera and they encode the
speed of the two wheels. Activation levels above
0,5 encode movements forward of a wheel and
activation levels below 0,5 encode movements
backward. These motor units control the robot's
behavior in the environment. The remaining two
output units represent two 'teaching units' that
encode a teaching input for the first two output
units. (For a more detailed description of the
structure and functioning of this type of netural
network, cf. Nolfi and Parisi, 1993.) This
teaching input is used by the two motor units in
order to learn using the backpropagation
procedure. In other words, the neural
architecture includes two distinct sub-networks
that share the same input units but have separate
output units. The first sub-network (standard
network; cf. the thick connections in Figure 2)
determines the creature's motor actions. The
second sub-network (teaching network; cf. the
thin connections in Figure 2) determines how the
standard network changes its connection weights
during life. The output of the teaching network
is used by the standard network as its teaching
input as part of the backpropagation procedure.
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While the connection weights of the teaching
network (teaching weights) do not change during
a creature's life, the connection weights of the
standard network (standard weights) do change
based on the teaching input provided by the
teaching network. Since it is the standard
network that controls the creature's behavior in
the environment, the behavior also changes.

Figure 2. Self-teaching network. The output of the
two teaching units is used by the two motor units as
teaching input to change the weights of the
connections leading to the two motor units.

When a network is placed in the environment
described above the following sequence of
events will occur. Sensory input is received on
the input units. Activation flows up reaching the
two motor units and the two teaching units. The
activation value of the two motor units is used
to move Khepera, thereby changing the sensory
input for the next cycle. The activation value of
the two teaching units (teaching input) is used to
change the weights that connect the input units
to the motor units according to the
backpropagation procedure (Rumelhart et al.,
1986). Then the next cycle begins.

3.2.2 The genetic algorithm

To evolve creatures that are able to reach the
target area efficiently we used a genetic
algorithm. We begin with 100 randomly
generated genotypes each yielding a network
with a different set of weights for the standard
and teaching sub-networks of 100 creatures.
Network architecture and learning rate are fixed
and identical for all individuals (although they
might have been part of what evolves in the
population. Cf. Belew et al., 1989; Kitano,
1990.) This is Generation 0 (G0). G0 networks
are allowed to live for 10 epochs, each epoch
consisting of 500 input/output cycles. At the

beginning of each epoch both the creature and
the target area are randomly placed inside the
arena. At the end of life the 20 individuals that
have accumulated the most fitness are allowed
to reproduce (unisexually) by generating five
copies of their genotype. The 100 new creatures
constitute the next generation (G1). During the
copying process 10% of the weights are mutated
by adding a quantity randomly selected in the
interval between -1.0 and +1.0 to the weight's
current value. The process is repeated for 1000
generations.

In each epoch the fitness of an individual is
increased by 500 - N units where N is the
number of cycles needed to reach the target area
in that epoch. In other words, individuals with
high fitness are individuals that are able to reach
the target area more quickly.  The total fitness
of an individual is the sum of its fitnesses in the
10 epochs of its life. If in one epoch the
individual is unable to reach the target there is
no fitness increase for that epoch. If in one
epoch an individual happens to hit the wall the
epoch is terminated. Therefore, individuals with
high fitness tend to be individuals that are able
to avoid hitting the wall (at least prior to
reaching the target area).

3.2.3 Adaptation to different environments

To test if the model is able to evolve
creatures that adapt during their life to the
particular environment in which they happen to
live we exposed creatures of different
generations to different environments. As
already said, creatures of even generations lived
in an arena with dark walls while creatures of
odd generations lived in an arena with bright
walls. The creatures had to be able to recognize
the particular environment in which they
happened to live and to change their behavior
(learn) in order to make it more adapted to the
particular environment (It must be noticed that
learning is only one way to adapt to a non-
stationary environment. There may be other
ways, e.g., through sensory adaptation or some
form of memory.)

The way in which our creatures may adapt to
different environments during their life becomes
clear if one considers that the output of the
teaching network, which functions as teaching
input for the standard network, depends on two
factors: the connection weights of the teaching
network and the activation value of the four
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input (sensory) units. While the connection
weights of the teaching network are genetically
inherited and are completely uninfluenced by the
current environment, the sensory input does
reflect the external environment. As a
consequence, the teaching input generated by the
teaching network may be influenced by the
external environment and it can teach different
things in different environments. Evolution has
the possibility to select creatures that are able to
adapt to changing environments by selecting
teaching weights that produce teaching inputs
that are different in different environments and
that teach behaviors that are appropriate to the
particular environment. More specifically, it
should select teaching weights that induce
modifications in the standard weights leading to
environmentally adapted behavior. In addition, it
should be noted that although the
backpropagation procedure will try to minimize
the discrepancy between the output of the
standard network and the output of the teaching
network, the two networks' outputs should not
necessarily converge (Nolfi and Parisi, 1994).
(We will come back to this point in Section 4.3.)

4. Experimental results

We ran two sets of simulations. In one set we
allowed individual networks to learn during life.
In the other set learning was not allowed. The
individuals of the population that learned had
the network architecture that has been described
in Section 3.2.1, which included a standard and
a teaching network. The individuals of the
population that did not learn had a simplified
network architecture that included only the
standard network: four input units encoding the
activation level of the eight sensors and two
output units encoding the movement of the two
wheels. The lifespan was identical in the two
populations. All the 16 connection weights plus
4 biases of the population that did learn and the
8 connection weights plus 2 biases of the
population that did learn were subject to
evolution. The mutation rate was 10% in both
populations.

In this Section (a) we will show that natural
selection succeeds in evolving individuals that
can learn to adapt to the particular environment
in which they happen to live; (b) we will try to
analyze how individuals that are allowed to
learn are able to discriminate between the two
environments; (c) we will discuss the

relationship between the evolutionary process
and the learning process and the role of a
creature's interaction with the environment
during learning.

4.1 Evolution can select for individuals that
learn to adapt to the particular environment

The first thing we did was to compare the
results of the simulations with and without
learning. As Figure 3 shows, individuals
increase evolutionarily their ability to efficiently
explore the environment in both the learning and
the nonlearning condition. They evolve
movement strategies that allow them to visit
more and more different parts of the
environment and to avoid hitting the walls. This
allows them to reduce generation after
generation the time taken in each epoch of life to
discover the target area. However, individuals
that are allowed to learn during their life
perform better than individuals that do not learn,
although the number of input/output cycles is
identical in the lifetime of both types of
individuals.
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Figure 3. Increase in the fitness of the single best
individual of 1,000 successive generations for the
population with learning during life (black curve)
and for the population without learning (grey
curve). Each curve represents the average of 10
replications.

This last result implies that learning has an
adaptive function for those creatures that are
allowed to learn. To understand how learning
can have this adaptive function we can directly
inspect the behavior of individuals that are
allowed to learn and compare it with the
behavior of individuals that do not learn. Figure
4 shows the trace left on the terrain by the
movements of a typical individual that learns
and by the movements of a typical individual
that does not learn, in both the dark and the
bright environments. The behavior of both
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individuals is rather stereotypical and
nonoptimal in the sense that both individuals fail
to visit some portion of the environment that
may contains the target area. However, the
behavior of the learning individual appears to be
more efficient that that of the nonlearning
individual. The nonlearning individual shown on
the top row of Figure 4 is able to avoid hitting
the walls in both the dark (left) and the bright
(right) environment but this individual is unable
to explore the portion of the environment which
is close to the walls in the bright environment.
Therefore, it can miss the target area in the
bright environment if the target area happens to
be located near the wall. On the contrary, the
individual that learns, shown in the bottom row
of Figure 4, is able to travel at about the same
close distance from the walls in both the dark
and the bright environment.

Figure 4. Behavior of two typical evolved
individuals of the nonlearning (top row) and
learning (bottom row) populations in the dark (left
side) and bright (right side) environments.

The reason why the nonlearning individual is
unable to visit the zone of the environment near
the walls is that this individual ignores in which
of the two environments it happens to be born
in. It inherits a behavioral strategy that is
somewhat adapted to both environments but that
prevents the individual to get too close to the
wall in the bright environment because the same
sensory input in the dark environment would
mean risking to hit the wall. (Remember that a
strong activation of the infrared sensors means
proximity to the wall.) On the contrary, the
individual that learns can discover through
learning in what environment it happens to live.
The inherited teaching weights generate different
teaching inputs for the standard network based
on the different sensory inputs sent to the
network by the two different environments.
Since this individual learns that the same level
of activation of the sensors means different
distances from the wall in the two environments,
the individual can generate different behaviors

in the two environments in response to the same
input and it can therefore adapt its behavior to
the particular environment.
In order to verify if the creatures that learn were
actually able to learn to adapt to the particular
environment they happen to be born in, we
tested 'adult' creatures (that is, creatures at the
end of their life and, therefore, of their learning)
both in the environment in which they had
developed and in an environment which was
different from the one they experienced during
their life. We made two copies of the weights
inherited by the best individual in each
generation and we left one copy live and learn in
the bright environment and the other copy in the
dark environment. At the end of life (learning)
the two resulting networks were tested, with
their weights frozen, in the opposite environment
to that in which they had lived and learned. The
results are shown in Figure 5. Individuals
perform better (i.e., they obtain more fitness) if
the environment in which they are tested is the
same environment in which they have lived and
learned. This shows that characters acquired
through learning are adapted to the particular
environment in which the learning takes place.
(Similar results have been obtained with
phenotypic plasticity, i.e., with inherited
genotypes that map into the phenotypic neural
networks in a way which is sensitive to the
particular environment in which the mapping
takes place. Cf. Nolfi et al., 1994b).
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Figure 5. Performance of creatures that have lived
and learned in either a dark or a bright
environment and are then tested in the same or
different environment. The black curves represent
the performance of individuals that are tested in the
same environment in which they have lived and
learned. The grey curves represent the performance
of individuals that are tested in a different
environment.

4.2 How individuals are able to discriminate
between the two environments
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In the preceding Section we have seen that
evolution is able to evolve individuals that learn
to adapt to the particular environment in which
they happen to live. Our next question is: How
is such an adaptation to the current environment
actually accomplished? How can individual
networks 'recognize' the type of environment
they happen to be born in and how can they
modify themselves to adapt to that environment?

If we examine the type of stimuli that the
same creature (i.e., the two identical copies of
the best individual of each generation)
experiences in the dark and in the bright
environment we see that these stimuli differ in
the two environments both quantitatively and
qualitatively. We measured the activation level
of the sensors during the entire lifetime of the
best individuals of each generation and we
discovered that the average activation level was
0.11 for the copy living in the dark environment
and 0.24 for the copy living in the bright
environment. In addition, we found that the
percentage of times each of the four input units
(corresponding to the left, right, front, and back
pairs of sensors) is the most activated one of all
units varies significantly at birth, i.e., prior to
learning, between the two environments (see
Figure 6). The measurement is obtained by
allowing an individual to live for 1 epoch prior
to learning in the two environments and
measuring the percentage of times each of the
four sensors is the most activated one.

Dark

L

F
R B

Bright

L

F

R

B

Figure 6. Percentage of time each of the four input
units is the most activated one at birth (i.e., prior to
learning) in one evolved individual of the
simulations with learning in the dark and bright
environments. (F=front sensor; B=back sensor;
L=left sensor; R=right sensor)

The different types of stimuli the creatures
experience in the two environments, by affecting
the type of teaching input computed by the
teaching network at each time step, allow the
creatures to modify their standard weights (i.e.,

the weights that determine their motor behavior)
differently in the two environments. Figure 7
shows how the weights of the standard network
of a typical evolved individual change in the two
environments. The thin curves and the thick
curves, that represent the change in weight value
in the dark and bright environment, respectively,
diverge in many cases. More specifically, in the
case of the individual shown, the weights do not
change very much when the individual lives and
learns in the dark environment whereas they
tend to change much more when the same
individual lives and learns in the bright
environment.
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Figure 7. Change in value of the 10 connection
weights of an evolved creature that lives and learns
either in a dark (thin curves) or in a bright
environment (thick curves). (W1-W8 = weights of
the input/output connections; B1 and B2 = biases of
the two output units)

Figure 7 shows that the changes in weight
value are restricted to only a minority of the
connection weights. However, these changes are
sufficient to determine significant qualitative
differences in the behavior of the learning
individuals across successive epochs of their life
(see below).

4.3 How learning and evolution interact

In the population without learning the
inherited standard weights of an evolved
individual incorporate an ability to explore the
environment efficiently, that is, in such a way
that the target area is discovered reasonably
quickly in most epochs of life. In other words,
an evolved individual is born with a general
solution to the problem inscribed in its genes.
This general solution is not optimal because it
cannot take into account the characteristics of
the particular environment in which the
individual happens to be born. However, it
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allows the individual to perform reasonably well
(cf. Figure 3).

What is the role of the inherited standard
weights in the case of individuals that are
allowed to learn during their life? Are we to
expect that the standard weights incorporate the
same general solution and that learning is able
to refine the inherited strategy by taking into
consideration the specificity of the current
environment?

If we compare the performance exibited prior
to learning by evolved individuals belonging to
the learning population with the performance of
individuals belonging to the nonlearning
population, we discover that this is not the case
(Figure 8). When tested for 10 epochs without
any learning, individuals belonging to the
learning population perform on the basis of their
inherited standard weights less well than
individuals of the nonlearning population. (This
result is also obtained with evolved self-teaching
networks living in a nonchanging environment.
Cf. Nolfi and Parisi, 1993). This contrasts with
the results of the comparison between the two
populations when performance is assessed after
learning. In these circumstances the individuals
of the learning population outperform those of
the nonlearning population (cf. Figure 3).
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Figure 8. Performance of learning (thick curve) and
nonlearning (thin curve) individuals at birth across
1000 generations. The performance of learning
individuals has been assessed by letting these
individuals live for 10 epochs without any learning.
Average of 10 replications.

This result seems to imply that the inherited
standard weights of the learning individuals are
selected not only in order to allow a good
performance in the task (as shown by their
performance at birth prior to learning) but also
in order to allow learning to produce a good
performance. In other words, the genes (i.e., the
inherited standard weights plus the inherited
teaching weights) of evolved individuals that are

allowed to learn incorporate not a predisposition
to behave efficiently but a predisposition to
learn to behave efficiently. In the next Section
we will analyze what a genetically inherited
predisposition to learn can mean in the context
of our simulations.

5. Genetically inherited predispositions to
learn

In order to understand what a predisposition
to learn can mean in the case of our creatures
we should consider that initial conditions (e.g.,
initial weights) can determine the course of
backpropagation learning (Kolen and Pollack,
1990) and evolution can select for good initial
weights for learning during life in nonecological
neural networks (Belew et al., 1991). We
already know that the initial (inherited) standard
weights of our learning creatures incorporate a
partially valid innate solution to the evolutionary
task since individuals tested at birth prior to
learning exhibit some limited ability to find the
target area efficiently (cf. Figure 8). However,
by conducting some special tests we can show
that both the genetically inherited standard
weights and the genetically inherited teaching
incorporate an innate predisposition to learn the
task.

To show that the initial stantard weights do
incorporate an innate predisposition to learn the
task we erase the inherited standard weights and
replace them with random values. If we allow
our creatures to learn based not on the inherited
standard weights but on random initial weights
their performance will remain constantly low
throughtout their life. Although the learning
error will progressively decrease, they won't
learn anything that improves the efficiency of
their exploration of the environment even if the
inherited teaching weights that we know can
teach efficient behaviors are left intact.

A predisposition to learn to explore more
efficiently the environment, therefore, is at least
in part incorporated in the inherited standard
weights. However, the inherited teaching
weights also incorporate a predisposition to
learn (or, more precisely, to self-teach). If we
allow our creatures to learn based on the
genetically inherited standard weights but we
randomize the teaching weights, in this case too
learning will destroy whatever ability to explore
is present at birth rather than increasing that
ability.
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We conclude that both the standard weights
and the teaching weights incorporate a
genetically inherited predisposition to learn and
that the two sets of weights must co-evolve
generation after generation.

However, learning in our ecological networks
is different from learning in nonecological
networks because ecological networks interact
with an independent environment and, therefore,
they at least in part control their own input.
More specifically, the inputs experienced by an
ecological network during learning - what can
be called its learning experience - are at least in
part a function of the creature's behavior. We
can then hypothesize that in ecological networks
a predisposition to learn can also mean that the
network starts learning with a tendency to
behave in such a way that the network is more
likely to experience inputs useful for learning
than other inputs.

That the standard weights are selected in
order to control the type of stimuli a creature
experiences during its life has already been
shown in previous simulations with a similar
framework (self-teaching networks) but with a
nonchanging environment (Nolfi and Parisi,
1994). In those simulations it was found that
evolved standard weights were able to expose
the creatures to sequences of input stimuli that
facilitated their adaptation to the environment
through learning. (For the role of the inputs
experienced during learning in nonecological
networks, cf. Plunkett and Marchmann, 1991).
In the present simulations learning individuals
appear to behave at birth in such a way that
they perceive enhanced differences between the
two environments with respect to nonlearning
individuals. To determine how the two
environments differ in the inputs that they make
available to the learning and nonlearning
organisms, we calculated the percentage of
cycles in which each of the four input unit was
the most activated one of the four units and we
compared these percentages for the two
environments for both learning and nonlearning
individuals. Since in ecological networks the
environmental input is influenced by the
network's motor output any discrepancy in how
differently the two environments are perceived
by learning and nonlearning organisms appears
to be entirely due to the different behavior
exhibited by the two types of organisms. The
differences in the activation level among the
four input units in the two environments reflect

the different behaviors of an organism in the two
environments. For example, if the left input unit
is the most activated one this means that the
organism behaves in such a way that it tends to
have the wall near its left side. If an individual
behaves in such a way that it tends to have the
wall near its left side in one environment and
near its right side in the other environment, one
can say that with its behavior the individual
enhances the differences between the inputs
perceived in the two environments.

The first column of Figure 9 shows the
average difference between the stimuli perceived
at birth in the two environments by nonlearning
individuals. The average is computed based on
the (single) best individual in each of the 1000
generations for 10 replications of the simulation.
A value of 0 means that each individual sensor
has the same probability to be the most
activated one in the two environments while a
value of 200 means that each of the four sensors
has an opposite probability to be the most
activated one. (For example, the left sensor is
always the most activated one in one
environment and it is never the most activated
one in the other environment.) The second
column shows the same average difference for
the learning individuals at birth, i.e., before any
learning. The third column shows the average
difference for the learning individuals at the end
of life, that is, after learning has had its effect.
The Figure indicates that (a) learning
individuals perceive at birth the two
environments as more different than the
nonlearning individuals, and (b) that there may
be a tendency for the differences to decrease
after learning (although the difference between
the second and third column is not statistically
significant).
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Figure 9. Difference in the percentage of time each
of the four input units is the most activated one in
the two environments for (1) nonlearning
individuals at birth, (2) learning individuals at
birth, and (3) learning individuals at the end of
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their life. Average results for the best individuals of
each generation in 10 replications of the simulation.
Differences are measured by allowing an individual
to live for 1 epoch prior to learning in the two
environments, by measuring the percentage of times
each of the four sensors is the most activated, and
by summing the differences between the two cases.
One-factor analysis of variance revealed that
Condition 1 significatively differs from Condition 2
(df=1/18, f=6.842, p<0.02) while Condition 1 and 3
and Condition 2 and 3, respectively, do not
significatively differ from one another (df=1/18,
f=1.145, p=0.29; df=1/18, f=.992, p=0.33).

We conclude tentatively that the standard
weights are selected in the learning individuals
to generate behaviors that enhance the perceived
differences between the dark and the bright
environments in order to allow learning to

produce different adaptive changes in the two
environments.
The analysis of the learning population is
further complicated by the fact that the input
stimuli may change qualitatively during an
individual's lifetime because learning modifies
the standard weights that determine the behavior
of the individual. Figure 10 shows that in a
typical evolved individual of the learning
population stimuli tend to remain more constant
during the course of the individual's life in the
dark environment while they tend to change if
the individual lives in the bright environment.
This leads to the conclusion that also the
teaching weights, by determining the effects of
learning in the standard weights, have a role in
enhancing the perceived differences between the
two environments.
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Figure 10. Change in stimuli experienced in successive epochs of life by a typical evolved individual (same
individual of Figures 6 and 7). The two graphs show the percentage of times each of the four sensors (front,
back, left, right) is the most activated one during life in the dark (left graph) and bright (right graph)
environment, respectively.

A further aspect of predispositions to learn in
our creatures emerges if one reflects that while
learning in classical neural networks has the
only goal to reduce the dicrepancy between the
network's computed output and the teaching
input, this is not so in our self-teaching
networks. All learning aims at reaching a
satisfactory behavior as soon as possible and to
maintain that behavior afterwards, with no
further weight changes. The adaptive meaning
of this for ecological networks is that
individuals that have reached a good stable
behavior because of learning can accumulate
more fitness during their life. Therefore, we
should expect that in our creatures both the
standard and the teaching weights should be
selected for their ability to generate good stable
behaviors as early as possible. That stable states
are quickly reached by our learning creatures
can be shown in various ways. Figure 7 directly

shows that many weights change significantly
early in life and then they remain stable for the
rest of life. Figure 10 shows that the distribution
of stimuli experienced by the individual in any
case stabilizes after the third epoch of life.
Finally, Figure 11 shows how performance
increases very rapidly early in life and then it
remains more or less stable.

It is important to notice, however, that in
ecological networks a good stable behavior
produced by backproprgation learning is not the
same thing as zero (or almost zero) error, as is
the case for learning in nonecological networks.
In ecological networks learning performance, as
measured by the dicrepancy between computed
output and teaching input (error), and fitness are
conceptually and operationally distinct entities.
In our simulations, although backpropagation
tries to minimize the discrepancy beween the
output of the standard network and the output of
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the teaching network, the two outputs never
converge. If they were to converge, the teaching
network could be used as the network that
directly controls the individual's behavior in the
environment, i.e., as the individual's standard
network, with no need for learning. But, as we
saw, a single network controlling the behavior
of the organism without learning performs less
well than our learning individuals with both a
standard network and a teaching network. What
the teaching network does is to induce changes
in the standard network that are adaptive with
respect to the two different environments
without directly teaching the appropriate
behaviors.
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Figure 11. Performance (fitness) of the learning
individuals in the 10 successive epochs of their life.
Each curve represents the average result of 200
successive generations in 10 replications of the
simulation. Performance at epoch 0 was calculated
by measuring the fitness of the individual at the
end of an entire epoch (500 cycles) without
learning.

5. Discussion

To study the ability to adapt to fast
evolutionary changes, e.g., changes that occur
from one generation to the next, we have run a
set of simulations in which a population of
neural networks, representing the nervous
system of creatures that interact with an
independent external environment, is subject to
both an evolutionary and a learning process.
Creatures are selected for reproduction on the
basis of their ability to explore one of two
possible environments. The creatures have the
possibility to learn using the backpropagation
procedure but, since we did not want to provide

them with the correct teaching input at each time
step as decided by the researcher, we used a
self-teaching architecture (cf. Nolfi and Parisi,
1993). In this architecture the teaching input for
the network that controls the individual's
behavior (standard network) is provided by a
separate network (teaching network) that relies
on the same sensors of the standard network and
is subject to the evolutionary process in the
same way as the standard network. We do not
claim that this architecture or the
backpropagation learning procedure itself are
biologically plausible. We adopted the self-
teaching architecture because it allows evolution
to select, by selecting the weights of the teaching
network, the way in which environmental
information modifies the nervous system of our
creatures and, as consequence, their behavior
during life.

By analyzing the creatures that evolved we
found that while in individuals that are not
allowed to learn the inherited characters
(weights, in our case) are directly selected for
their ability to produce successful behaviors, in
the case of individuals that can learn, the
characters are selected for their ability to
incorporate a predisposition to learn. This
genetically inherited predisposition to learn
consists of several things: (a) the presence of
starting conditions at birth (i.e., initial weights
for learning) that canalize learning in the right
direction; (b) the ability to select experienced
inputs that similarly canalize learning in the
right direction; (c) the ability to reach and
maintain a desirable stable state. This pattern of
results is found both in the case the environment
is stable (unchanging) (Nolfi and Parisi, 1994)
and in the case the environment changes from
one generation to the next - the present case. In
this second case, however, things are more
complex because the starting conditions should
be able to canalize learning in different
directions and to reach different stable states in
different environments. We succeeded in
evolving individuals that can recognize the type
of environment in which they happen to be born
and to learn to adapt to the particular
environment. By comparing the stimuli
experienced in the two environments by
individuals that learn and by individuals that do
not learn it can be shown that the weights
inherited by the learning individuals are able to
enhance the differences between the stimuli
experienced in the two environments and,



13

therefore, to make it easier to learn different
behaviors in the two environments.

The simulations described in this paper show
that learning cannot be studied, as is done in
"classical" connectionism (Rumelhart and
McClelland, 1986), independently from
evolution. Evolution selects for genetically
inherited predispositions to learn in
environments that can require different
adaptations. These genetically inherited
predispositions interact with the sensory input
available in the environment to determine the
kind of adapted behavior which is appropriate
for the particular environment in which the
individual happens to develop.

Future directions of research include the
study of the effects of different patterns of
environmental change across generations (e.g.,
environments that change randomly at each new
generation), of environments that can change
during an individual's life, and of more complex
environments and behaviors.
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