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Abstract 
In this paper we demonstrate that learning tend to have a beneficial effect on 
evolution even if the characters that are acquired through learning do not have 
any adaptive advantage by themselves. The beneficial effect is due to the fact that 
learning force evolution to select individuals that are located in regions of the 
search space in which the learning and the evolutionary tasks are dynamically 
correlated. This has two implications: (1) evolving individuals display a 
predisposition-effect to benefit from learning, i.e. while improving their 
performance with respect to the learning task during lifetime they also tend to 
improve their performance with respect to the evolutionary task, and (2) evolving 
individuals display a shelter-effect, i.e. lifetime learning allows them to partially 
recover from mutations that are deleterious with respect to the evolutionary task. 
This, in turn, might allow learning individuals to tolerate higher mutation rate 
than non-learning individuals thus enhancing the exploratory power of the 
evolutionary search. 

 
 
 
1. Introduction 
 
In the effort to explain evolutionary gaps in the fossil records, more than a century ago James 
Mark Baldwin (Baldwin, 1896) advanced the idea that evolution could be influenced by 
learning during life without assuming that learned features could directly modify the 
genotype (as hypothesized by Lamarck, 1914)1. Baldwin's argument was that learning 
accelerates evolution because sub-optimal individuals can reproduce by acquiring during life 
necessary features for survival. However, since learning requires time (and might thus be a 
disadvantage), Baldwin suggested that evolution tends to select individuals who have already 
at birth those useful features which would otherwise be learned. This latter aspect of 
Baldwin's effect, namely indirect genetic assimilation of learned traits, has been later 
supported by scientific evidence and defined by Waddington (1942) as a canalization effect. 

A simple and clear demonstration of how learning influence evolution has been provided 
by Hinton and Nowlan (1987) with a simple model based on artificial evolution (see section 
2). In particular the authors found that: (a) random changes occurring during individuals 
lifetime, by altering the shape of the search space, might significantly speed up the 
evolutionary search (we will refer to this as the guide-effect of learning on evolution), and (b) 

                                                           
1 Similar views were expressed in the same period by Morgan (Morgan, 1896) and Osborn (Osborn, 1896). 
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given that learning has a cost, traits that are first acquired through learning tend to be 
genetically specified in successive generations (we will refer to this as the assimilation-effect 
of previously learned traits). 

Few years later Nolfi et al. (1990, 1994) found that learning had positive effects on a 
population of agents that evolve to get fitter at one task and also learn, during their lifetime, a 
different task (see also Nolfi and Parisi [1996] and Nolfi [1999]). In particular the authors 
found that: (a) after few generations evolving individuals, while improving their performance 
on the learning task, also showed an improvement on the evolutionary task during lifetime 
(we will refer to this as the predisposition-effect to benefit from learning), and (b) learning 
individuals displayed better performance on the evolutionary task at the population level (we 
will refer to this as the shelter-effect of learning). It should be noticed that the predisposition-
effect was also observed in cases in which the learning and the evolutionary tasks were 
apparently uncorrelated (Parisi et al. 1992). 

Recently Harvey (1997) observed a positive effect of learning on evolution in a case in 
which, as in the case of the experiments described above, the learning and the evolutionary 
tasks were different. In particular  the author observed that: (a) already from the initial 
generation, individuals improved their performance on the evolutionary task while learning 
another uncorrelated task, and (b) learning individuals displayed better performance on the 
evolutionary task. Harvey proposed that both these effects can be explained as form of 
relearning (and not as a result of the interaction between learning and evolution). We will 
refer to these effects and to their explanation as the relearning-effects.  

In this paper, we will demonstrate that the effects observed by Harvey (1997) are due to 
the fact that the two tasks are dynamically correlated (for a definition of dynamical 
correlation see below). Beside of that, by relying on a variation of the simple experimental 
framework designed by Harvey, we will demonstrate that the predisposition-effect and the 
shelter-effect are a very general phenomena that arises, independently of the learning task, in 
all cases in which learning has a directionality. 

We will start by briefly reviewing the experiments of Hinton and Nowlan's (1987) and of 
Nolfi et al. (1994) in section 2 and 3 respectively. We will review the experiments conducted 
by Harvey (1997) and we will present additional analysis on these experiments in section 4. 
We will present our new results in section 5. Finally, we will discuss the implications of the 
obtained results in section 6. 
 
2. On the effects of random changes occurring during individuals lifetime 
 
A simple and clear demonstration of how learning2 influence evolution has been provided by 
Hinton and Nowlan (1987) with a simple model based on artificial evolution. The authors 
considered and extreme simple example in which only a single combination of gene values 
confers added reproductive fitness to a population of evolving individuals. Individuals have a 
genotype with 20 genes that can assume two alternative values (0 or 1). The only 
combination of genes that provide a fitness value above 0 consists of all ones. In this extreme 
case, the probability of finding the good combination of genes would be very small given that 
the fitness surface looks like a flat area with a spike in correspondence of the good 
combination (see the thick line in Figure 1, left and right). Indeed, on such a surface, artificial 
evolution does not perform better than random search. Finding the right combination is like a 
looking for a needle in a haystack. 

 

                                                           
2 As in the case of Hinton and Nowlan (1987) we will use the term learning to indicate any form of change 
occurring to evolving individuals during their lifetime. 
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Figure 1. Left: Fitness surface with and without learning. In absence of learning, the fitness surface is flat, with 
a thin spike in correspondence of the good combinations of alleles (thick line). When learning is enabled, the 
fitness surface has a nice hill around the spike which includes the alleles combination which have in part right 
fixed values and in part unspecified (learnable) values (thin line). The thick line represents the fitness for each 
possible combination of two alleles ([0, 1]) while the thin line represents the fitness for each possible 
combination of three alleles [0, 1, ?]). Redrawn from Hinton & Nowlan (1987). Right: The line represents the 
fitness for each possible combination of two alleles [0, 1]. The cross-marks represent the positions of the 
individuals at birth. The arrows represent the movements of the individual in the search space corresponding to 
changes of modifiable alleles.  
 

The situation is much different in the case of learning individuals. One simple way to 
introduce learning is to assume that, in learning individual, genes can have three alternative 
values [0, 1, and ?] where question marks indicate modifiable genes whose value is randomly 
selected within [0, 1] each time step of the individuals' lifetime. In the model proposed by the 
authors, therefore, learning does not have a directionality and consists in random generating 
the value of all unspecified genes (i.e. genes whose inherited value is ?). As shown by the 
authors, performance increases much faster along generations in the case of learning 
individuals than in their non-learning equivalents. The addition of learning, in fact, produces 
an enlargement and a smoothing of the fitness surface area around the good combination 
which can be discovered and easily climbed by the genetic algorithm (see dashed line in 
Figure 1, left). This is due to the fact that not only the right combination of alleles but also 
combinations which in part have the right alleles and in part have unspecified (learnable) 
alleles might report an average fitness greater than 0 (fitness monotonically increases with the 
number of fixed right values because the time needed to find the right combination is 
inversely proportional, on the average, to the number of learnable alleles). Learning makes 
the fitness surface smoother, and this, in turn, simplifies the search which should be 
performed by evolution. As claimed by Hinton & Nowlan, with learning “it is like searching 
for a needle in a haystack when someone tells you when you are getting close” (1987, p. 
496). This is what we have called the guide-effect of learning. 

In the representation adopted in the left part of Figure 1 each individual is represented as 
a point on the fitness surface with a height corresponding to the average fitness of the 
individual during its lifetime. This is a static representation in which changes in performance 
during lifetime cannot be visualized. Another way of representing the individuals in the 
search space is to imagine that each point in the search space correspond to a given 
combination of 0 and 1 (see Figure 1, right). In this case changes occurring during 
individuals' lifetime correspond to movements on the search space (see the arrows in Figure 
1, left). By using this convention the advantage of learning can be explained by considering 
that learning individuals, by moving in the search space during lifetime, are more likely to 
spend at least few cycles of their lifetime on the spike. In other words we can say that 
learning allows the evolutionary process to explore the landscape surrounding each candidate 
for reproduction (Nolfi et al., 1990). 



 4

Once individuals that have part of their genes fixed on the right values and part of their 
genes unspecified (learnable) are selected, individuals with less and less learnable genes tend 
to be selected given that fitness monotonically increases by decreasing the number of 
learnable genes (an equilibrium point is eventually reached, see Hinton & Nowlan, 1987). In 
other words, characters that were first acquired through learning tend to become genetically 
specified later on. This is what we have called the assimilation effect. 

Despite its explicative power, this model has several limitations: (1) learning is modeled 
as a random process; (2) there is no distinction between the learning task and the evolutionary 
task; (3) the learning space and the evolutionary space are completely correlated. The two 
spaces are correlated if genotypes which are close in the evolutionary space correspond to 
phenotypes which are close in the phenotype space (Mayley, 1997). In this model, learning 
and evolution operate on the same entities (i.e. the connection weights) with the same 
operators (i.e. both changes produced by mutations and changes produced by learning 
correspond to substitutions of genes with new values which are randomly selected). 
Therefore the two spaces are completely correlated. By systematically varying the cost of 
learning and the correlation between the learning space and the evolutionary space, Mayley 
(1997) showed that: (1) the adaptive advantage of learning is proportional to the correlation 
between the two search spaces; (2) the assimilation of characters first acquired through 
learning is proportional to the correlation between the two search spaces and to the cost of 
learning (i.e. to the fitness lost during the first part of the lifetime in which individuals have 
sub-optimal performance); (3) in certain situations learning costs may exceed learning 
benefits. 

In the next sections we will presents other experimental setting in which part or all these 
limitations are released. 
 
3. The case of a learning task that differ from the evolutionary task. 
 
Nolfi et al. (1994) have studied the case of artificial agents (also known as animats, see 
Wilson, 1987) that evolve (to become fitter at one task) at the population level and learn (a 
different task) at the individual level. In particular, individuals which were selected for their 
ability to find food in their environment were also asked to learn to predict the sensory 
consequences of their motor actions during their lifetime.  
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Figure 2. Left: The environment containing 10 food tokens (O) and the animat (A). The trace on the terrain 
represents the trajectory of a typical evolved individual. Right: Neural network architecture. All connections 
weights are inherited; however, connections represented with thin lines are also modified by prediction learning 
during the lifetime of the individual while connections represented with thick lines are not.  
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Each individual animat lives in a two-dimensional grid world where a number of food 

tokens are randomly distributed (Figure 2, left). Each food token occupies one cell; if the 
animat happens to step on one of these cells, the food token is automatically “eaten'' and the 
animat's fitness is increased. Individuals are equipped with a neural network interfaced to a 
sensorimotor system that provides input information on the distance and angle (with respect 
to the facing direction of the animat) of the nearest food token, and on the planned motor 
action (Figure 2, right). Two input units encode the angle and the distance of the nearest food 
token and two other units (thresholded to the nearest binary value) encode one of four 
possible actions: turn 90° right, turn 90° left, move one cell forward, and remain still. At each 
time step, the neural network receives as input the sensory information on the nearest food 
token and the current planned motor action and produces as output the next planned action 
and a prediction of the sensory state after the execution of the current planned action. At this 
point: (a) the planned action that was used as input is executed and the next planned action is 
passed as new input; (b) the freshly-gathered sensory information is used both as input and as 
teaching input for the output units encoding the predicted state of the sensors (the new 
sensory state is compared with the predicted state and the difference (error) is used to adjust 
by back-propagation the connection weights between the four input, the seven hidden, and 
the two prediction units). 

Each sensorimotor cycle is repeated for 20 epochs (life span) during which the animat is 
allowed to spend 50 actions in 5 environments with randomly different food distributions (for 
a total of 5000 cycles). The initial population is composed of 100 individuals, each with the 
architecture described in Figure 2 and randomly assigned connection weights in the ± 1.0 
interval. At the end of life the 100 individuals are ranked in terms of their fitness (total 
number of food elements eaten during life) and the best 20 individuals are allowed to 
reproduce by generating 5 copies each of their connection weights. The inherited original 
weight matrices (changes due to learning during life are discarded) are mutated by selecting 5 
weights at random and perturbing the weight's value by adding a quantity randomly selected 
in the ± 1.0 interval. The process is repeated for 100 generations. 
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Figure 3. Left: Average number of food elements eaten by populations of successive generations which learn to 
predict. Each curve represents performance prior to learning and then for each of the 20 epochs of life 
(performance prior to learning are obtained by measuring the number of food tokens eaten by individuals during 
one epoch of life without updating the weights). For reasons of space, performance are displayed only each 10 
generations. Right: Average of food tokens eaten by populations of animats throughout generations for 
experiments with and without learning. Left and Right: Average results over 10 replications. 

 
The results showed that, after a few generations, individuals learning to predict also 

increased their ability to find food during life (Figure 3, left). Moreover, by comparing the 
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results of the experiments described above with another set of experiments in which 
individuals were not allowed to learn to predict during their lifetime, it was shown that 
learning populations displayed faster and higher fitness values across generations than 
populations without learning (Figure 3, right). Similar results were obtained in other cases 
and in particular in cases in which the learning task and the evolutionary task were apparently 
uncorrelated (see Parisi et al., 1992). 

 

 
 
Figure 4. Fitness surface for the evolutionary task and performance surface for the learning task (sensory 
prediction) for all possible weight combinations. Movements due to learning are represented as arrows. Point a 
is in a region in which the two surfaces are dynamically correlated. Even if a and b have the same fitness on the 
evolutionary surface at birth, a has more probability to be selected than b since it is more likely to increase its 
fitness during life than b. 
 

The first effect, namely the fact that after few generations individuals increase during 
lifetime their ability to eat while learning to predict, can be explained by considering that 
evolution will tend to select individuals that are located in regions of the search space where 
the learning and evolutionary surfaces are dynamically correlated (Nolfi et al., 1994; Parisi 
and Nolfi, 1996). Changes due to learning produce a movement of the individual phenotype 
both on the learning and the evolutionary surfaces (see Figure 4). However, because learning 
tries to maximize performance on the learning task, individuals will move toward the higher 
area of the learning surface. Given that the way in which individuals move in weight space 
affects their fitness (the total fitness of the individual is the sum of the fitness values received 
during such displacements on the weight space) evolution will tend to select individuals 
located in areas in which, by increasing their performance on the learning task, they also 
increase their performance on the evolutionary task. The final result is that evolution will 
have a tendency to progressively select individuals which are located in dynamically 
correlated regions. In other words, evolution will tend to select individuals that have a 
predisposition to improve their performance on the evolutionary task by learning, 
independently from what individuals learn during their lifetime. For this reason we named it 
predisposition-effect. 

The fact that the loss in performance produced by mutations (mutations are counter-
adaptive, on the average) can be recovered only in learning individuals may explain the 
second observed effect, namely that learning individuals outperform non-learning 
individuals, on the average (see Figure 3, right). The abilities that are lost by the population 
due to mutations can be restored, at least in part, by learning given that evolving individuals 
tend to be located in areas where the evolutionary and learning surfaces are dynamically 
correlated (Nolfi, 1999). For this reason we named this second positive effect of learning on 
evolution shelter-effect. Further supports to this hypothesis come from the analysis conducted 
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by Carse and Oreland (2000) on a replication of this experiment. The authors, in fact, 
observed that the average performance of the top 20 non-learning individuals (i.e. the 
population of the next generation before mutations were applied) and the average 
performance of the learning individuals (after mutations were applied) are almost identical. 
On the basis of this observation the authors claimed "…that learning is not guiding evolution 
in the sense of finding better individuals but rather that lifetime learning is diminishing the 
detrimental effect of mutation on the average population fitness" (p.9). 

We will come back to these effects in section 5 were we will describe a much more 
simple experimental framework in which these effects can be observed and more easily 
analyzed. 
 
4. On the role of re-learning 
 
In a recent paper Harvey (1997) tried to verify if the second effect described in the previous 
section (namely the fact that learning individual outperform non-learning individuals on the 
average) could be observed in an experimental framework in which the learning and the 
evolutionary task were clearly uncorrelated.  

The author devised a simple experimental framework in which, as in the case of the 
simple model described in section 2, there is a direct relation between genotypes and 
phenotype but in which evolving individuals can display a simple form of directional learning 
as in the case of the experiments described in the previous section (Harvey, 1997). Genotypes 
consist in vectors of 50 real numbers that, in the initial population, are randomly drawn from 
the interval [-1.0, 1.0]. The evolutionary and learning tasks consist in minimizing the distance 
of the genotype from two fixed target vectors (E and L respectively) that are randomly drawn 
from the interval [-1.0, 1.0]. Performance, with respect to the evolutionary and learning task, 
is given by the inverse of the Euclidean distance of the genotype from L and E respectively. 
Learning consist in a single application of the delta rule during individuals lifetime (i.e. the 
genotype vector is moved once toward the target learning vector by a proportion ∆ = 0.1 of 
its actual distance). The fitness of the genotype consists of the Euclidean distance after the 
learning step (in the case of the learning individuals). Population consisted of 100 
individuals. The top 20 individuals were selected and were allowed to reproduce. Two set of 
experiments were conducted by allowing each reproducing individual to generate 4 mutated 
copies and by keeping the 20 elite members unchanged or by allowing each reproducing 
individual to generate 5 mutated copies. Mutations consist in adding a random value drawn 
from [-1.0, 1.0] to 5 randomly selected genes. Offspring inherited the genotypes of their 
parent before learning (i.e. changes due to learning were not inherited).  

It should be noticed that the fact that individuals are evaluated at the end of their learning 
phase has two implications: (1) acquiring a character through learning has no cost and 
therefore one should not expect a tendency to genetically assimilate characters previously 
acquired through learning, and (2) learning cannot guide evolution as in the experiment 
described in section 2. Indeed, although individuals explore two points of the search space 
during their lifetime (the point corresponding to their genotype at birth and after the 
movement toward L), only the fitness corresponding to the latter point has an effect on the 
selection process.  
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Figure 5. Thin and thick curves represent the distance from the evolutionary target of non-learning and learning 
individuals respectively. Both the average performance of the population and the performance of the best 
individual of each generation are shown. A B and C represent the performance before mutations, after 
mutations, and after learning in the case of learning individuals (thick and thin lines represent the performance 
of the population and of the best individual respectively). ABC data are shown for generation 0 and 999 only. 
Average results of 20 replications. Left: Performance in the experiments in which mutations were applied to all 
members of the population. Right: Performance in the experiments in which the 20 elite individuals were 
preserved. 

 
Figure 5 shows the results obtained by replicating the original experiments but by 

continuing the evolutionary process for 1000 generations instead than 100. Obtained results 
are consistent with those described in Harvey (1997). It should be noticed, however, that in 
the experiment in which the 20 elite member of the population were keep unchanged 
performance continue to increase after the first 100 generations and reach close to optimal 
performance3. 

By comparing the performance of experiments conducted with and without learning one 
can see the same two effects that we observed in the experiments described in the previous 
section: (a) during lifetime learning individuals also tend to increase their performance with 
respect to the evolutionary task (Figure 5, see BC data), and (b) learning individuals 
outperform non-learning individuals (Figure 5, see the thick and thin lines corresponding to 
learning and non learning individuals respectively). The difference is that in this experiment 
the former effect is observed already from the initial generation (i.e. in absence of any 
selection and reproduction within the population) while in the experiments described in the 
previous section it was observed only after few generations. More precisely, as observed in 
Harvey (1997), already from the first generation the distance from the evolutionary target 
first increases as a result of mutation and then decreases as a result of lifetime learning (i.e. of 
movement toward the learning vector [Figure 5, see ABC data]).  

                                                           
3 Similar results can be obtained by mutating all the individuals but by reducing the mutation rate. 
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Accordingly to Harvey (1997, p. 318), all these effect can be explained by considering 
that: 

 
The effect of lifetime learning is to partially restore degraded performance of 
networks that have had their weights perturbed (by mutation) away from trained 
(through evolution) values--a form of re-learning. 

 
This hypothesis is based on evidence that by perturbing the weights of a neural network 

previously trained with back-propagation on a set of input-output pairs and then retraining the 
network on a new training set, uncorrelated with the original one, performance also improves 
on the patterns belonging to the original training set (Harvey and Stone, 1996). As shown in 
Figure 6, this form of re-learning can be illustrated with a geometrical argument (Harvey and 
Stone, 1996; Harvey, 1995, 1997).  

 

B1

B2

A

Q

P

CA1

 
 
Figure 6. Two dimensional representation of the search space (see text for explanation). Redrawn with 
modification (A1 added) from Harvey (1995, 1997).  
 

Assume that A represents the weights of the network trained on the original training set, 
B1 and B2 are two possible positions of the network after perturbation, and C is the position 
of the network after being trained on the second training set. Finally, assume that 
performance on the original set is inversely proportional to the distance from point A. 
Whenever B lies outside the inner arc PQ (e.g., B1), its trajectory gets closer to A for some 
time; instead, whenever B lies inside the inner arc PQ (e.g., B2), its trajectory always goes 
away from A. Regardless of the position of C, the former situation happens more than 50% of 
the times for a 2-dimensional  weight space and much more often in a high-dimensional 
weight space; furthermore, it happens 100% of the times when C lies within the circle 
(Harvey, 1997). 

On the basis of this explanation, the author claimed that the beneficial effects of learning 
can be explained by considering a highly converged evolved population distributed around 
point A (the evolutionary target) being pulled away by mutations toward B, and then moving 
toward point C (the learning target) during lifetime learning. Harvey (1995, 1997) also 
proposed this as an alternative explanation of the dynamical correlation hypothesis described 
in the previous section (for additional data that demonstrate that the relearning hypothesis 
cannot explain the results observed in the experiments described in the previous section see 
Nolfi [1999] and Carse and Oreland [2000]). 

If we look at the position of the top 20 individuals in the search space however, we can 
easily see that the evolving population does not tend to converge around A but around A1 (see 
Figure 6), i.e. to a point that ensures that by learning (i.e. by moving toward C of a given ∆) 
individuals will reach A. Figure 7 shows the Euclidean distance of the top 20 individuals 
before learning takes place from the evolutionary target E and from E - ∆L (thin and thick 
lines respectively). Notice that E - ∆L, i.e. the position from which, by learning, individuals 
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can reach the point corresponding to the evolutionary target correspond to point A1 in the case 
of Figure 6. This result fits nicely the predisposition-effect hypothesis described in the 
previous section that postulates that evolution tends to select individuals that are located in 
dynamically correlated regions of the learning and evolutionary surfaces. 
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Figure 7. Average distance from E and E - ∆L (thin and thick line respectively) of the 20 elite members 
throughout generations. Left: Performance in the experiments in which mutations were applied to all members 
of the population. Right: Performance in the experiments in which one copy of each elite individuals was 
preserved by mutations. 
 

It remains to be explained: (a) why in this experiment a positive effect of lifetime 
learning is observed already in the initial generation, and (b) whether the advantage of 
learning with respect to non-learning individuals on the average can be explained as a form of 
shelter-effect or as a form of re-learning (despite population does not tend to converge around 
A). By carefully analyzing the experimental setting, both effects can be explained by 
considering that, despite the learning and the evolutionary target vectors are randomly 
selected, the learning and the evolutionary tasks are dynamically correlated on the average 
(two tasks are dynamically correlated when changes that result on improvements with respect 
to one task also produce improvements with respect to the second task, on the average). The 
fact that the learning and the evolutionary task are dynamically correlated in this case, can be 
easily explained by considering that the two targets are selected within the central portion of 
the search space (between -1.0 and 1.0) while mutations tend to move individuals also outside 
of this portion of the space.  
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Figure 8. Left: The square represents the central portion of the search space (for graphical reason we displayed a 
2D search space). a and b represent two individuals. The thickness of the arrows represents the probability that 
the two individuals move in the corresponding direction as a result of learning. Right: The square represents the 
central portion of the search space. The filled circles represent the position of the individual at birth (i.e. before 
learning). Arrows represent the displacement of the individuals in the search space resulting from mutations.  
 

Consider Figure 8, left. For the individual a that is located in the very central portion of 
the square the probability to move toward north, south, east or west are the same given that 
the learning target might be located in each direction with the same probability. For the 
individual b however, the probability to move toward north and/or west is much higher than 
the probability to move toward the other two directions. This can be explained by considering 
that, the learning target is located in a randomly selected position within the central portion of 
the space bounded by the square. Given that the portion of the space on the north/west of 
individual b is much larger that the portion of the space on its south-west, it is much more 
likely that the learning target is located in the former portion of the space. Given that also the 
evolutionary target is located in a randomly selected position within the square, the 
probability that the individual b, by approximating that learning target, will also approximate 
the evolutionary target is higher than 50%. The overall picture is that, aside from the case of 
the individuals located in the very central portion of the space, by learning individuals will 
also tend to increase their performance on the evolutionary task, on the average, 
independently of their relative position with respect to the two targets. In other words, the 
evolutionary and learning surfaces are dynamically correlated overall (two surfaces are 
dynamically correlated when movements that produce an improvement in the learning 
surfaces also produce improvements on the evolutionary surface on the average, see Nolfi et 
al. [1994], Nolfi and Parisi [1996]). Notice that the predisposition-effect described in the 
previous section does not requires that the two surfaces are dynamically correlated overall but 
only that there are sub-areas in the search space in which the two surfaces are dynamically 
correlated. The predisposition-effect, in fact, postulates that evolution will tend to select such 
sub-areas and therefore that learning will tend to have a beneficial effect with respect to the 
evolutionary task even if the two surfaces are not dynamically correlated overall. 

A further way to demonstrate that the increase in performance as a result of lifetime 
learning already in the very first generation is due to the fact that the two tasks are 
dynamically correlated overall, is to conduct another experiment in which the target vectors 
are carefully chosen so to assure that the two surfaces are not correlated overall. As we will 
show in the next section, in this case (as in the case of the experiments described in the 
previous section), the beneficial effect of learning on evolution can be observed only after 
some generations. 
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5. Learning X improves your fitness, provided that also your ancestors happened to 
learn X. 
 
To study the interaction between learning and evolution in a case in which the learning and 
the evolutionary surfaces are not dynamically correlated, we replicated the experiments 
described in the previous section by utilizing a toroidal search space. Notice how this is 
equivalent to postulate a non toroidal and unbounded search space in which there are an 
infinite number of learning and evolutionary local optima that are separated of a distance of 
2.0 in each dimension (i.e. an experimental setting that more naturally resemble the case of an 
evolving animat such as that described in section 3 in which one can assume that a large 
variety of solutions exist and that solutions are not necessarily confined within the central 
portion of the search space). In addition we selected the learning and the evolutionary targets 
so to assure that the learning and evolutionary surfaces are not dynamically correlated or anti-
correlated overall. In particular the evolutionary and the learning targets were separated of a 
distance of 0.428 along each dimension. 

Figure 9 shows an example of how this can be accomplished in a 2D search space. The 
distance between the learning and evolutionary targets (L and E respectively) along each 
dimension is chosen so to assure that half of the search space consist of areas in which the 
two surfaces are dynamically correlated (see the full circles) and the other half consist of 
areas in which the two surfaces are dynamically anti-correlated (see the empty circles). The 
former are areas from which by learning individuals increase their performance with respect 
to the evolutionary task, the latter are areas from which by learning individuals decrease their 
performance with respect to the evolutionary task. Therefore the space is dynamically 
uncorrelated overall. Notice that in this example, in order to maximize their fitness, learning 
individuals should get born with a genotype that is localized in the north-west area of E. Also 
notice that Figure 9 is a flat representation of the toroidal space. This implies that individuals 
might travel from opposite extremes of the square representation both as result of learning 
and as result of mutations. 
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Figure 9. A 2D toroidal search space that is uncorrelated overall. E and L represent the evolutionary and 
learning target. Full and empty circles represent areas from which, by reducing the distance of a ∆ = 0.1 from L, 
individuals respectively decrease or increase their distance with respect to E. 
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In the case of the toroidal search space, as in the experiment described in section 3, 
performance of learning individuals with respect to the evolutionary task increase during 
lifetime at generation 999 but not at generation 0 (Figure 10, BC data). This effect is due to 
the fact that, as in the case of the experiments described in the previous section, the evolving 
population tend to converge toward E - ∆L (result not shown),  i.e. toward areas in which the 
learning and the evolutionary surfaces are dynamically correlated. Also notice how the 
performance of the population at generation 0 does not vary on average as a result of 
mutations or as a result of lifetime learning (Figure 10, ABC data, top thick lines). This result 
nicely fits with the predisposition-effect hypothesis we introduced above. Learning influence 
evolution by pushing the evolving population toward areas of the search space that are 
dynamically correlated and this, in turn, assures that evolving individuals by learning also 
improve their performance with respect to the evolutionary task. Notice that this 
predisposition-effect results from the interaction of learning and evolution and cannot be 
explained as a form of re-learning. 
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Figure 10. Experiment with the toroidal search space. Thin and thick curves represent the distance from the 
evolutionary target of non-learning and learning individuals respectively. Both the average performance of the 
population and the performance of the best individual of each generation are shown. A B and C represent the 
performance before mutations, after mutations, and after learning in the case of learning individuals (thick and 
thin lines represent the average performance of the population and of the best individual respectively). ABC data 
are shown for generation 0 and 999. Average results of 20 replications. Left: Performance in the experiments in 
which mutations were applied to all members of the population. Right: Performance in the experiments in 
which a copy of each reproducing individual was preserved by mutations.  
 

The second thing to notice is that, in the case in which all 100 individuals are affected by 
mutations, learning individuals outperform non-learning individuals (see Figure 10, left). In 
the case of the experiment in which a copy of each reproducing individual is preserved by 
mutations, learning individuals slightly outperform non-learning individuals during the first 
250 generations (see Figure 10, right). Also in this case (as in the case of the experiments 
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described in section 3), learning individuals start to outperform non-learning individuals after 
some generations.  

The fact that the advantage of learning individuals is stronger in the first case in which 
the population receive more mutations suggest that this effect can be interpreted as a form of 
shelter-effect (i.e. learning allows evolving individuals to recover from negative mutations). 
This can be more clearly demonstrated by comparing the loss in performance produced by 
mutations in two hypothetical population of learning and non-learning individuals that 
converged to the local optimum4. As we demonstrated above, non-learning individuals tend 
to converge on E, and learning individuals on E-∆L. As shown in Figure 11, the average 
distance from the evolutionary target after mutations is higher in the case of mutated copies 
of non-learning individuals that are distributed around E (see the black histogram) than in the 
case of mutated copies learning individuals that are distributed around E-∆L (see the white 
histogram). Given that both learning and non-learning individuals had optimal performance 
before receiving mutations, we can conclude that learning allows individuals to partially 
recover the effect of negative mutations. Therefore, this shelter-effect is an indirect 
consequence of the predisposition-effect given that it require that the population is located in 
a region of the search space in which the learning and the evolutionary surfaces are 
dynamically correlated. 
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Figure 11. Average loss of performance for non-learning individuals (NL) and learning individuals (L-B and L-
C) as a result of mutations. Non learning individuals are mutated copies of an hypothetical individual located on 
E. Learning individuals are mutated copies of an hypothetical individual located on E-∆L. In the case of 
learning individuals the L-B and L-C histograms represent the distance from the evolutionary target after 
mutations but prior to learning and after mutations and learning respectively. 
 
 
6. Discussion 
 
Learning influence evolution in several ways and significantly impact the course of the 
evolutionary process. 

As first demonstrated by Hinton and Nowlan (1987), learning can help and guide 
evolution by significantly speeding-up the evolutionary search. In particular the guide-effect 
of learning might favor the acquisition of useful traits during lifetime that might become 
genetically specified later on as a result of a genetic assimilation effect. 

                                                           
4 Data obtained by setting E to all 0.0 and L to all 0.428 (i.e. by using a search space in which the learning and 
the evolutionary surfaces are dynamically uncorrelated overall). The value corresponding to the black histogram 
has been obtained by computing the average distance from E of 100,000 mutated copies of E. The value 
corresponding to the gray and white histogram has been obtained by computing the average distance from E of 
100,000 mutated copies of E-∆L before and after learning. Learning consisted in moving the mutated copies 
toward L of a  ∆ = 0.1). Mutations consisted in adding a random value drawn from [-1.0, 1.0] to five selected 
genes. 
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As we demonstrated in this paper, learning tend to have a beneficial effect on evolution 
even if the learning task and the evolutionary task are uncorrelated. This can be explained by 
considering that learning forces evolution to select individuals that are located in regions of 
the search space in which the learning and the evolutionary surfaces are dynamically 
correlated. This, in turns, has two implications: (1) individuals display a predisposition-effect 
to benefit from learning, i.e. while improving their performance with respect to the learning 
task during lifetime they also improve their performance with respect to the evolutionary 
task, and (2) individuals display a shelter-effect, i.e. lifetime learning allows them to partially 
recover from mutations that are deleterious with respect to the evolutionary task.  This in turn 
might allow learning individuals to tolerate higher mutation rate than non-learning 
individuals thus enhancing the exploratory power of the evolutionary search. 

The only preconditions that should be satisfied in order to observe the predisposition and 
the shelter effects are: (a) that lifetime learning has a directionality, and (b) that individuals of 
previous generation where exposed to the same form of learning. In short, by paraphrasing 
the title of a paper of Harvey and Stone (1995), one might claim that learning to play poker 
might increase your ability to survive if also your ancestors were poker players. 

More generally these results show how learning and evolution cannot be regarded as 
relatively separated phenomena that can be studied independently. Learning and evolution 
strongly and deeply influence each other (for an example of how evolution influence learning 
see Parisi and Nolfi [1996]) and cooperate in ways that might appear subtle and 
counterintuitive at a first glance. 
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