
Institute of Psychology
C.N.R. - Rome

Evolving non-trivial behavior on autonomous robots:
Adaptation is more powerful than decomposition

and integration

Stefano Nolfi
Department of Neural Systems and Artificial Life

Institute of Psychology, National Research Council (C.N.R.)
15, Viale Marx

00137 - Rome - Italy
voice: 0039-6-86090231

fax: 0039-6-824737
e-mail: stefano@kant.irmkant.rm.cnr.it

www:http://kant.irmkant.rm.cnr.it/gral.html

April 1997

Published in: Nolfi, S. (1997). Evolving non-trivial behavior on autonomous robots:
Adaptation is more powerful than decomposition and integration. In T. Gomi (Ed.),
Evolutionary Robotics, Ontario (Canada): AAI Books, 1997.

2

Evolving non-trivial behavior on autonomous robots:
Adaptation is more powerful than decomposition and

integration

Stefano Nolfi
Institute of Psychology, National Research Council

15, Viale Marx - 00187 - Rome - Italy
voice: ++39-6-86090231 fax:++39-6-824737

e-mail: stefano@kant.irmkant.rm.cnr.it
http://kant.irmkant.rm.cnr.it/nolfi.html

1. Introduction

Recently a new way of building control systems, known as behavior based robotics, has
been proposed to overcome the difficulties of the traditional AI approach to robotics (Brooks,
1986). This new approach is based upon the idea of using simple sensorimotor processes,
operating in parallel, to enable robots to react quickly and robustly in noisy environments.

The design of a control system centered on the behavior based approach usually
involves breaking down the required behavior into a set of basic behaviors (also called
reflexes), such us “approach” or “avoid”, and designing an action selection or coordination
mechanism able to ensure that only the correct basic behavior has control over the actuators
at the right time. Most of the time both the modules of the controller corresponding to the
defined basic behaviors and the action selection mechanism are designed by the experimenter
even if the design process is accomplished often incrementally and involves intensive testing
and debugging.

We believe that the process of breaking down the required behavior into sub-
components should be the result of an adaptation process and not of a decision of the
experimenter. The most straightforward way to shape behavior through adaptation is to use
the evolutionary robotics approach (Cliff, Harvey, and Husbands, 1993) in which behaviors
are developed in close interaction with the environment and in which the human intervention
is limited to the specification of a rule for determining how much a given behavior
approximates to the one desired.

In this paper we will support this hypothesis by showing how in two different cases a
more simple and robust solution can be obtained by letting the entire behavior emerge
through an evolutionary technique than by trying to design a set of modules and to coordinate
them. In the first case we will analyze the case of a Khepera robot that should be able to
classify objects of different shapes by finding and remaining close to the object of type A
(cylinders) and by avoiding and ignoring objects of type B (walls). In the second case we will
analyze the case of a robot of the same type but with a gripper module that should be able to
find and pick-up cylindrical objects and to release them outside an arena surrounded by
walls.

2. Methodological issues

The experiments we describe in the next Sections involve the miniature mobile robot
Khepera (Figure 1) developed at E.P.F.L. in Lausanne, Switzerland (Mondada, Franzi, and
Ienne, 1993).

3

It has a circular shape with a diameter of 55 mm, a height of 30 mm, and a weight of
70g. It is supported by two wheels and two small Teflon balls. The wheels are controlled by
two DC motors with an incremental encoder (10 pulses per mm of advancement by the
robot), and they can move in both directions. In addition, the robot is provided with a gripper
module with two degrees of freedom. The arm of the gripper can move through any angle
from vertical to horizontal while the gripper can assume only the open or closed position.
The robot is provided with eight infra-red proximity sensors (six sensors are positioned on
the front of the robot, and the remaining two on the back), and an optical barrier sensor on
the gripper able to detect the presence of an object in the gripper (the two back infra-red
sensors and others available sensors were not used in the experiments described in this
paper).

A Motorola 68331 controller with 256 Kbytes of RAM and 512 Kbytes ROM handles
all the input-output routines and can communicate via a serial port with a host computer.
Khepera was attached to the host by means of a lightweight aerial cable and specially
designed rotating contacts. This configuration makes it possible to trace and record all
important variables by exploiting the storage capabilities of the host computer and at the
same time provides electrical power without using time-consuming homing algorithms or
large heavy-duty batteries.

Figure 1. The Khepera robot.

To train the controller for the robot we used a simulator of the robot and of the
environment. The resulting controllers where then downloaded and tested on the real robot.
This procedure was used to reduce the time needed for the training process. The most
complex experiment, that described in Section 4, took about one day for each simulation on
the computer and it would have taken about one year on the real robot.

A sampling procedure was used to calculate the activation state of the infra-red sensors.
The walls and the target objects were sampled by placing the physical Khepera in front of
one of them, and by letting it turn 360o, recording, at the same time, the state of the infra-red
sensors at different distances with respect to the objects. The activation level of each of the
eight infra-red sensors was recorded for 180 different orientations and for 20 different
distances. In this way two different matrices of activation were obtained for the two types of

4

objects (walls and target). These matrices were then used by the simulator to set the
activation state of the simulated sensors depending on the relative position of Khepera and of
the objects in the simulated environment. (When more than one object was within the range
of activation of the sensors, the resulting activation is computed by summing the activation
contribution of each object). This sampling procedure may prove to be time consuming in the
case of highly unstructured environments because it requires to sample each different type of
objects present in the environment. However, it has the advantage of taking into account the
fact that different sensors, even if identical from the electronic point of view, do respond
differently. Sampling the environment throughout the real sensors of the robot allowed us, by
taking into account the characteristics of each individual sensor, to develop a simulator
shaped by the actual physical characteristics of the individual robot we have.

The effects of the two motors were sampled similarly by measuring how Khepera
moved and turned for each of the 20x20 possible states of the two motors. At the end of this
process a matrix was obtained that was then used by the simulator to compute the
displacements of the robot in the simulated environment.

The physical shape of Khepera (including the arm and the gripper), the environment
structure, and the actual position of the robot, were accurately reproduced in the simulator
and computations were carried out with floating point precision. Motor actions that caused
the robot to crash into the walls were not executed in the simulated environment. Therefore,
the robot can get stuck at the walls if it was unable to avoid them. In contrast, when the arm
crashed into a piece of trash, the trash was moved to a new random location within the
environment (for more about methodological issues see Nolfi, Florano, Miglino, and
Mondada, 1994; Miglino, Lund, and Nolfi, 1995).

3. Comparing the decomposition/integration and the evolutionary approach

In the first experiment we describe we tried to develop a control system for a Khepera
robot that could distinguish between objects with different shapes.

The environment of the robot is a rectangular arena of 60x35 cm surrounded by walls
which contains a target object. The walls are 3 cm in height, made of wood, and are covered
with white paper. The target object consists of a cylinder with a diameter of 2.3 cm and a
height of 3 cm. It is made of cardboard and covered with white paper. The target is
positioned in the center of the arena.

Figure 2. The environment and the robot.

The robot has to distinguish between walls and target objects. In particular we want the
robot to explore the environment, avoiding walls and remaining close to targets when it finds
them.

5

In section 3.1 we will describe an attempt to solve the task by using a decomposition
and integration approach, while in section 3.2 we will describe a similar attempt using an
evolutionary approach. In both cases we tried neural networks with different architectures to
implement the controllers.

3.1 Designing by decomposition and integration

In order to accomplish the task described we can break down the required behavior into
simpler behaviors and develop a set or modules able to accomplish the required sub-
behaviors. In our case we can break down the required behavior into: (1) moving in order to
explore the environment, (2) recognizing objects, (3) avoiding objects, (4) approaching and
remaining close to an object. Once we have modules able to produce these sub-behaviors we
have to design a coordination mechanism that can decide which module has to take control
each time step or else design the modules and the corresponding behaviors in such a way
that, by letting all of them run in parallel, the interference arising from the interaction
between different modules does not impair the accomplishment of the task.

The first module, the third and the fourth modules (i.e. exploring the environment,
avoiding objects, and approaching objects) are easy to design and have been implemented
several time on Khepera and on other robots. On the contrary, the second module (i.e.
classifying sensory stimuli) is not so easy to design. However, because fortunately we know
if an input pattern corresponds to a wall or to a target, we can use a supervised learning
procedure to train a system (for example a neural network) to classify the two types of input
stimuli.

We tried 3 different architectures: (a) a feedforward architecture with two layers, an
input layer with 6 neurons (coding the activation of the 6 frontal infrared sensors of Khepera)
and one output neuron (coding with 0 for wall and 1 for targets); (b) an architecture with an
additional internal layer with four units; (c) an architecture with an additional internal layer
with 8 units. For each architecture we ran 10 training processes starting with different
randomly assigned initial weights. Networks were trained by back-propagation (Rumelhart,
Hinton, and Williams 1986) for 5000 epochs. A learning rate of 0.02 and no momentum were
used. During each epoch, networks were exposed to the sensory patterns perceived by the
robot at 20 different distances and at 180 different angles with respect to a wall and to a
target, for a total of 7200 different patterns.

%
 c

or
re

ct

0

5

10

15

20

25

30

35

40

no-hidden 4-hidden 8-hidden

average
peak

Figure 3. Percentage of positions from which sensory stimuli are correctly classified by network with no
hidden units, 4 hidden units, and 8 hidden units. Average and peak performance of 10 different simulations for
each condition. For 20 different distances and 180 different angles (3600 different positions in all) networks
were required to produce an output above or below the threshold, depending on the type of object. Responses
were considered correct if, in a given position, the network was able to correctly classify both the wall and the
target.

6

Figure 3 shows the percentage of positions from which the networks were correctly
able to classify the two types of stimuli (i.e. to produce an activation value below 0.5 in the
case of a wall and above 0.5 in the case of a target) for each of the three different
architectures. As can be seen, networks were able to correctly classify only 22% of the cases
for networks without hidden units and about 35% of the cases for networks with the
additional layer of 4 hidden units. The addition of other hidden units did not allows to obtain
better performance.

The fact that only some of the stimuli can be correctly classified can be explained if we
consider that, given the sensory apparatus of the robot, objects can be disambiguated only at
a given angle and distance. In other words they are ambiguous in the other cases. If we look
at Figure 4, which represents the positions (i.e. the combination of angle and distance) from
which networks are able to correctly classify the sensory patterns, we see that stimuli can be
correctly classified if the objects are not more than 120o to the left or the right of the robot
face and no more than 32mm away. In addition, there are two zones in which the objects
cannot be correctly disambiguated even though they correspond to positions located at about
60o to the left or the right and a short distance away from the objects.

It is also interesting to note that the zones in which stimuli can be correctly
disambiguated are not symmetrical. This has to do with the fact that different sensors, even if
identical from the electronic point of view, actually respond differently. As a consequence, it
is clear that whether stimuli are ambiguous or not is a function of both the structure of the
stimuli themselves and of the sensory apparatus of the agent.

Figure 4. Stimuli correctly classified for each combination of distance and angle of the robot with respect to
the objects. The three pictures (from top to bottom) represent the result for the best simulation with no hidden,
4 hidden, and 8 hidden units, respectively.

7

Given these results we can see that a simple feedforward neural networks, irrespective
of the number of internal neurons, is unable to correctly classify the incoming input patterns
in our environment. In fact, most of the times the network produces incorrect classifications
as shown in Figure 2 and 3.

A possible solution to this problem is to add an additional module capable of deciding
when the incoming stimuli can be correctly classified by a network of the type described
above. When stimuli cannot be classified, the robot can continue to approach the object until
a classifiable stimulus is encountered.

Scheier and Pfeifer (1995), who developed the control systems for a Khepera robot that
performed a task very similar to the one described in this paper, proposed and implemented
another interesting solution (see also Scheier and Lambrinos, 1996). Their environment is an
arena surrounded by walls containing large and small pegs and a home base with a light
source attached to it. The robot has to bring the small pegs to its home base and as a
consequence has to distinguish between small pegs from large pegs and walls. In order to
accomplish this task the authors designed a set of elementary behaviors (move forward, turn
toward objects, avoid obstacles, grasp, and bring to the nest) and allowed them all to run in
parallel in order to obtain the desired behavior. Because the robot was programmed to turn
around objects and the shape of the object determined the angular velocity of the turning,
they decided to train a network to associate the vectors of angular velocities that
corresponded to small pegs with grasping behavior and the other vectors of angular velocity
with avoiding behavior.

It thus appears possible to find a solution to the problem of classification in this robot-
environment context. However, in the next section we will show that by using adaptation
instead of decomposition-and-integration a simple feedforward network without hidden units
can be trained not only to correctly classify the two types of objects but also to perform the
entire required behavior without the need to add any other neural structure.

3.2 Designing by evolution

To evolve neural controllers able to perform the task described in section 3 we began
with 100 randomly generated genotypes, each representing a network with a different set of
randomly assigned connection weights. This was Generation 0 (G0). G0 networks were
allowed to "live" for 5 epochs, with each epoch consisting of 500 actions. At the beginning of
each epoch the robot was randomly positioned in the arena far from the target. At the end of
their life, individual robots were allowed to reproduce. However, only the 20 individuals
which had accumulated the greatest fitness (see below) in the course of their life reproduced
(agamically) by generating 5 copies of their neural networks. These 20x5=100 new robots
constituted the next generation (G1). Random mutations were introduced in the copying
process, resulting in possible changes of the connection weights. The process was repeated
for 100 generations.

Mutations were introduced in the copying process, resulting in possible changes of the
connection weights. Mutations were obtained by substituting 2% of randomly selected bits
with a new randomly selected value (as a consequence, about 1% of the bits were actually
changed).

Individuals were scored for the number of cycles spent at a distance lower that 8 cm
from the target. This meant that individuals had a probability to reproduce that was
proportional to their ability to find the target quickly and to remain close to it. The activation
of the sensors and the state of the motors were encoded every 100 milliseconds.

8

We tried 3 different architectures and for each of them we ran 10 simulations starting
with different randomly assigned weights. All architectures had 6 sensory neurons which
encode the activation level of the corresponding 6 frontal sensors of Khepera and 2 motor
neurons which encode the speed of the left and right motors of Khepera. The three
architectures differed in the number of internal units: the first architecture did not have any
internal layer, the second had an internal layer with 4 units, and the third had an internal
layer with 8 units.

The genetic encoding scheme was a direct one-to-one mapping. The encoding scheme
is the way in which the phenotype (in this case the connection weights of the neural network)
is encoded in the genotype (the representation according to which the genetic algorithm
operates). One-to-one mapping is the simplest encoding scheme where one and only one
'gene' corresponds to each phenotypical character. In our case, to each connection weight and
bias corresponded to a sequence of 8 bits for the genotype which had a total length of
respectively: 112, 304, and 592 in the 3 different architectures described. (For more complex
encoding schemes also allowing evolution of the neural architecture, see Cliff, Harvey and
Husband, 1993; Nolfi, Miglino, and Parisi, 1994; Grau, 1995).

If we look at the fitness of individuals throughout generations we can see how, after a
few generations, the best individuals, by incorporating an ability to avoid walls, explore the
environment and keep close to the target, are able to earn very high fitness rate by spending
most of their time close to the target objects (see the graph on the left side of Figure 5).

It should be noted that networks without internal units are able to solve the task
perfectly well. As a consequence the addition of internal units does not produce any
improvement in performance and, indeed, result in less efficient individuals in average (see
the graph on the right side of Figure 5). This can be explained by the fact that the addition of
useless internal neurons, which require longer genotypes, merely enlarge the space to be
searched by the evolutionary process.

generations

fi
tn

es
s

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90

no-hiddens

4-hiddens

8-hiddens

generations

fi
tn

es
s

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90

Figure 5. Fitness (i.e. number of cycles, out of 2500, spent close to the target) throughout generations for the
three different architectures. The graph on the left shows the performance of the best individual in each
generation, while the graph on the right shows the average performance of each generation. Each curve
represents the average result of 10 simulations starting with different initial weights.

Nevertheless individual networks have been trained in simulation, the evolved
individuals were then downloaded and tested on the real robot and were find to be capable of
performing the task perfectly well. No significant difference was observed between behavior
in the simulated and real environments in most of the evolved individuals.

Figure 6 shows the behavior of a typical evolved individual. The robot, after being
placed in front of a wall on the right hand side of the environment, recognizes and avoids the
wall, recognizes and avoids the new wall it encounters, and finally finds and keeps close to

9

the target. All individuals, like the one shown in the figure, never stop in front of the target,
but start to move back and forth as well as slightly to the left and right remaining at a given
angle and distance with respect to the target (see graphs ‘a’ and ‘d’ representing the angle
and the distance of the robot with respect to the closest object over time).

Figure 6. The top part of the figure represents the behavior of a typical evolved individual without internal
units. The lines represent walls, the full circle in the center of the arena represents the target object, the large
empty circle around the target represents the area in which the robot is rewarded, the small empty circle
represents the position of the robot after 500 cycles, finally the trace on the terrain represents the trajectory of
the robot. The graphs in the bottom part of the figure represent the angle and the distance of the robot with
respect to the closest object (a, d), the state of the two motor neurons (o0, o1), and the state of the 6 infrared
sensors (i0 to i5) over time.

3.3 Decomposition-and-integration and evolution lead to qualitatively different
solutions

Interestingly enough, the positions relative to the target that individual robots (with and
without internal units) maintain once the target has been found, are not located in the
discriminative area, that is in the area in which targets and walls can be correctly classified
by a network without hidden units (see Figure 3). On the contrary, individual networks do
usually start to move back and forth when they reach an area that overlaps the border
between the discriminative and non discriminative areas as is shown in Figure 7.

By analyzing the strategy of the other evolved individuals we observed that, because of
the different initial conditions of the evolutionary process, these individuals varied in the
relative positions assumed in front of the target (some stopped with the target in front or
almost in front of them, others with the target on the right side, and only a few with the target
on the left side). However, all evolved individuals remained close to the target, moving back
and forth in front of it. In addition, in most cases, evolved individuals remained close to the
target by assuming relative positions which were not located in the discriminative area (i.e.

10

from which the two type of objects could not be correctly classified by a network trained
with back-propagation).

Figure 7. The top picture represents the stimuli that can be correctly classified by an evolved network without
internal units (same data as Figure 4). The picture on the bottom represents, in black, the relative positions
(angular and distance combinations) that a typical evolved individual assumes with respect to a target once the
target has been reached. Each point represents the combination of angle (from -180 to +180 degrees) and
distance (from 0 to 40 mm) with respect to the target during one cycle.

Figure 8. Angular trajectories of the same individual described in Figure 6 and 7 close to a wall (top graph)
and to a target (bottom graph). The picture was obtained by placing the individual in a random position in the

11

environment, leaving it free to interact with the environment for 500 cycles, and recording the change in the
relative positions with respect to the two objects for distances lower than 40 mm. For the sake of clarity
arrows are used to indicate the relative direction but not the amplitude of movements.

The evolved behavior can be described as a dynamical system and the relative position
in which individuals start to move back and forth while remaining in about the same relative
position with respect to the target can be described as an attractor since the robot’s trajectory
converges on the same relative positions regardless of the direction of approach to the target.
This is more clearly shown in Figure 8 and 9 which shows the trajectory of the movements
that the same individual produced when it come close to a wall or the target. As can be seen,
when the individual reaches a distance of about 20mm from an object it avoids walls while it
continue to approaches targets until it reaches the attractor area located at a distance of about
15 mm and an angle of about 45 degrees. As can be seen, the trajectory of the motor
responses in this area all converge to the center of the area itself allowing the individual to
keep more or less the same relative position.

It is interesting to note that, as shown in Figure 8, the individual was able to reach the
attractor area only if it approached the target from the right side (i.e. at an angle of between
about 30 and 60 degrees). When it approached targets from the left side (i.e. the side from
which it approached walls 70% of the times), it erroneously avoided the target.

Figure 9. Angular trajectories of the same individual described in Figure 8 starting from a different random
selected initial position.

It should be clear at this point that the type of solution found by the evolutionary
process is qualitatively different from those that we and other researchers (e.g. Scheier and
Pfeifer, 1995) have hypothesized to solve the task following the decomposition and

12

integration approach. By fully exploiting the advantage of an intensive integration between
the sensorimotor systems and the structure of the environment, the evolved individuals can
overcome the problem posed by the fact that the two classes of stimuli are ambiguous in most
cases. The classification of the two types of objects is not accomplished by a dedicated basic
behavior (e.g. turning around the object until the classification is accomplished). Neither can
we distinguish between a phase in which the individual should classify the object and a phase
in which the classification has been accomplished. On the contrary, classification is an
emergent property that is the result of the way in which the individual reacts to several
different input stimuli.

4. Investigating the role of modularity

In the previous sections we showed how the decomposition-and-integration and the
evolutionary approach may lead to qualitatively different ways of solving the same problem
and how adaptation may be able to find simpler and robust solutions. In this section we shall
investigate the role of modularity, that is the importance of having control systems organized
into sub-components or modules.

From the point of view of the decomposition and integration approach, the use of
modularity is implicit in the approach itself. The desired behavior is broken down into a set
of basic behaviors or reflexes (such us “approach” or “avoid”) which correspond to a set of
sub-components (modules) of the controller.

Conversely, in the case of the evolutionary approach the use of modularity is not
mandatory. As we shown in the previous section, a non-modular control system such as a
fully connected perceptron is perfectly able to produce a behavior that can be decomposed
into a set of basic behaviors (in our case to explore the environment, to avoid walls, and to
approach and remain close to targets).

Should we expect that behaviors of any complexity can be produced by homogeneous
non-modular controllers or that modularity is necessary for certain tasks?

Moreover, should we expect a correspondence between modules and basic behaviors if
we use modular controllers?

To answer these questions we will present a set of simulations in which neural
controllers with different architectures have been trained using the evolutionary approach to
produce a “garbage collecting behavior”.

4.1 Evolving a garbage collecting behavior

We decided to try to develop a control system for a Khepera robot with the task of
keeping clear an arena surrounded by walls. The robot should look for "garbage", somehow
grasp it, and take it out of the arena. The task of cleaning the arena can be broken down into
several sub-tasks: (a) explore the environment, avoiding the walls; (b) recognize a target
object and to place the body in a relative position so that it can be grasped; (c) pick up the
target object; (d) move toward the walls while avoiding other target objects; (e) recognize a
wall and place the body in a relative position that allows the object to be dropped out of the
arena; (g) release the object. Moreover, these sub-tasks can be broken down into smaller
components. For example (a) may be broken down into (a1) go forward when sensors are not
activated; (a2) turn left at a given speed when right sensors are activated etc.

The environment was a rectangular arena 60x35 cm surrounded by walls containing 5
target objects. The walls were 3 cm in height, made of wood, and covered with white paper.
Target objects consisted of cylinders with a diameter of 2.3 cm and a height of 3 cm. They
were made of cardboard and covered with white paper. Targets were positioned randomly
inside the arena.

13

Figure 9. The robot and the environment.

In order to assess the role of modularity we tried several different network
architectures. All architectures had 7 sensory neurons and 4 motor neurons although they
differed in their internal organization. The first 6 sensory neurons were used to encode the
activation level of the corresponding 6 frontal sensors of Khepera and the seventh sensory
neuron was used to encode the barrier light sensor on the gripper. On the motor side the four
neurons respectively coded for the speed of the left and right motors and for the triggering of
the "object pick-up" and "object release" procedures.

The simplest architecture used was a 2-layer feedforward neural network (see Figure
10a). The second architecture was also a feedforward neural network but had an internal
layer of four units (Figure 10b). We then tried a recurrent architecture in which the activation
level of two additional output units was copied back into two additional input units (Figure
10c). Finally we tried two modular neural architectures (i.e. networks in which different parts
or modules had control in different sensory-environmental situations). The first modular
architecture (Figure 10d) had two modules, of which the corresponding expected behavior
was pre-determined by the designer. The first module (i.e. the sub-network on the left) had
control when the robot gripper was empty, and was therefore dedicated to the ability to find a
target, while avoiding walls, recognize it, and pick it up correctly. The second module (i.e.
the sub-network on the right) was in control when the gripper was carrying a target and was
therefore dedicated to the ability to find a wall while avoiding other targets, stop in front of it
and release the target. The partition of the required behavior into these two basic behaviors
and into the corresponding neural modules was of course arbitrary, although it seemed to be
the most reasonable one given that the robot was expected to perform two very different
behaviors depending on the state of the gripper.

The second modular architecture (see Figure 10e) was denoted as an “emergent
modular architecture” because it allows the required behavior to be broken down into sub-
components corresponding to different neural modules, although it does not require the
designer to do such a partition in advance. The number of available neural modules (in this
case two for each motor output), the architecture of each module, and the mechanisms that
determine their interaction is pre-designed and fixed. However the number of modules
actually used by an individual, the combination of modules used each time step, and the
weights of the modules themselves are learned during the training phase. In particular, the
sub-division of the behavior into basic behavior corresponding to different neural modules is
emergent.

A

B

C

D

E

Figure 10. The 5 different architectures used to evolve the controller: (a) a standard feedforward architecture;
(b) an architecture with an internal layer of hidden units; (c) a recurrent architecture; (d) a modular
architecture with two pre-designed modules; (e) an emergent modular architecture.

This architecture had 16 output units, which, at every time step, gives 4 output values
controlling the 4 previously described effectors. Four pairs of output neurons (represented by
empty circles) coded for the speed of the left and right motors and for the triggering of the
"object pick-up" and "object release" procedures, respectively, and four pairs of selector
neurons (represented by full circles) determined which of the two competing output neurons
had control over the corresponding robot's effector each time step (the competitor with the
corresponding highly activated selector neuron gained control). Each module was composed
of two output neurons, two corresponding biases, and 14 connections from sensory neurons.
The first output neuron determined the motor output when the module has control, the second
output neuron (selector) competes with the selector neuron of the other corresponding
module to determine which of the two modules has to take control.

The activation of the sensors and the state of the motors were encoded every 100
milliseconds. However, when the activation level of the "object pick-up" or of the "object

15

release" neurons reached a given threshold, a sequence of action occurred that possibly
required one or two seconds to complete (e.g. move a little further back, close the gripper,
move the arm up, for the object pick-up procedure; move the arm down, open the gripper,
and move the arm up again, for the object release procedure).

It is important to note that the task chosen is particularly well suited to study the role of
modularity because, as described above, the required behavior can be broken down into
several basic behaviors that may be implemented in different neural modules. Moreover, the
task requires a controller able to produce very different motor responses for similar sensory
states. Let us take the case of the robot in front of a target, it should avoid or approach it
according to the presence or absence of a target on the gripper (in the two cases the only
difference is the state of 1 sensor out of 7). Or else, let us take the case of a robot in front of
an object with an empty gripper, it should avoid or approach the object according the type of
the object; wall or target (in the two cases the infrared sensors have only slightly different
activation values). Modular neural networks that can use different neural modules in different
environmental situations might have an advantage in learning to produce very different motor
responses for very similar sensory patterns with respect to a single, uniformly connected,
neural network.

For each network architecture, we began with 100 randomly generated genotypes each
representing a network with the corresponding architecture and a different set of randomly
assigned connection weights. This is Generation 0 (G0). G0 networks are allowed to "live"
for 15 epochs, with each epoch consisting of 200 actions (about 8 seconds in the simulated
environment using an IBM RISC/6000 and about 300 seconds in the real environment). At
the beginning of each epoch the robot and the target objects were randomly positioned in the
arena. Epochs terminated after 200 actions or after the first object had been correctly
released. At the end of their life, individual robots were allowed to reproduce. However, only
the 20 individuals which had accumulated the most fitness in the course of their life
reproduced (agamically) by generating 5 copies of their neural networks. These 20x5=100
new robots constituted the next generation (G1). Mutations were introduced in the copying
process, resulting in possible changes of the connection weights. Mutations were obtained by
substituting 2% of randomly selected bits with a new randomly selected value (as a
consequence, about 1% of the bits were actually changed). The process was repeated for
1000 generations.

The genetic encoding scheme was a direct one-to-one mapping. Genotypes had a total
length of: (A) 256, (B) 416, (C) 480, (D) 480, and (E) 1024 bits in the 5 different
architectures described.

Individual networks were scored by counting the number of objects correctly released
outside the arena. However, in order to facilitate the emergence of the ability to achieve the
task, individuals were also scored (even if with a much lower reward) for their ability to pick
up targets. In addition, it was found important to expose the robots to useful training
experiences (i.e. to artificially increase the number of times when the robot, while carrying a
target object, encountered another target) in order to force the evolutionary process to select
individuals able to avoid targets when the gripper was full. This was accomplished by
artificially positioning a new target object in the frontal area of the robot each time it picked
up a target during evolutionary training (see also Nolfi, in press).

4.2 Emergent modularity speed-up evolution and allows the development of more
robust controllers

If we measure the average number of epochs (out of 15) in which individuals correctly
pick up and then release a target outside the arena for simulations with different architectures
we can see how in all conditions an ability to accomplish the correct sequence of behaviors

16

evolves (see Figure 11). Note that epochs terminated after 200 actions or after the first object
had been correctly released. As a consequence the max. number of targets that can be
released outside the arena is equal to the number of epochs. However, evolved individuals
with different architectures vary in the performance achieved at the end of the evolutionary
training and in the time needed to reach plateau level performance. If we look at performance
of generation 999 we can see how all types of architectures have reached high performances
with the exception of the simple feed-forward architecture (A). If we look at performance
throughout generations we can see how the emergent modular architectures, after few
generations, start to outperform all the other architectures maintaining a difference until
generation 500 (this result is even more meaningful if one consider that architecture (E), by
requiring a longer genotype with respect to the other architectures, also implies that the
genetic algorithm has to search a larger space). A oneway analysis of variance of
performance in the five different conditions was performed each 100 generations. The results
show that performance in condition (E) is significantly higher than in the other four
conditions at generation 199 and performance in condition (A) is significantly lower than the
other four conditions at generation 999 (p < 0.05).

A

B
C D

E

0

3

6

9

12

0 100 200 300 400 500 600 700 800 900 1000

generations

su
cc

es
sf

ul
 e

po
ch

s

Figure 11. Number of epochs (out of 15) in which individuals with different architectures correctly picked up
and then released a target object outside the arena through out generations. Each curve represents the average
of the best individuals in 10 different simulations. Data smoothed by calculating rolling averages over
preceding and succeeding 3 generations.

By downloading the best controllers of generation 999 (for 10 replications of the
simulation) into the robot and testing them in the real environment for 5000 cycles for their
ability to clean up the arena by removing 5 randomly placed target objects, we can see that
architecture (E) clearly outperforms all other architectures (see Figure 12). The best
individuals of 7 (out of 10 simulations) with the emergent modular architecture were capable
of cleaning the arena without displaying any incorrect behavior while only 1 or 2 individuals
(out of 10) with other architectures were capable of accomplishing the task.

17

su
cc

es
sf

ul
 in

di
vi

du
al

s
0

1

2

3

4

5

6

7

A B C D E

Figure 12. Number of evolved individuals for each control architectures capable of correctly picking up
and then releasing outside the arena the 5 targets objects within 5000 cycles without displaying any incorrect
behavior (e.g. crashing into walls, trying to grasp a wall, or trying to release a target over another target).
A,B,C,D,E indicate the five different architectures described in Figure 10.

These results show that the emergent modular architecture (E) enables the evolutionary
process to find a correct solution to the task earlier than other architectures and in particular
earlier than the hand-crafted modular architecture (D). Moreover results show how the
emergent modular architecture allows the evolutionary process to select more robust
solutions to the task, i.e. controllers which showed only a limited loss of performance when
transferred into the real robot.

4.3 There is no correspondence between evolved modules and basic behaviors.

At this point we may try to answer the second question we mentioned at the beginning
of this section: can we find a correspondence between basic behaviors (e.g. to look for a
target while avoiding walls; to look for a wall while avoiding targets etc.) and modules in
evolved individuals?

If we analyze the type of solutions found by individuals with the architecture E which
is the most successful architecture and which allows the evolutionary process to decide which
module to use in any individual/environmental situations, we can say that the answer to this
question is clearly no.

Figure 13 represents the behavior of a typical evolved individual. As we said in the
previous section, individuals with emergent modular architecture have two different modules
for each of the four motor outputs and therefore can use up to 16 different combination of
neural modules. However, the evolved individual described in Figure 13, i.e. one of the most
successful, uses only a single module to control the left motor, the pick-up procedures, and
the release procedure (LM, PU, and RL) and it uses both neural modules only for the right
motor (RM). For an analysis of other individuals see below. What is interesting to note is that
those two modules competing for the control of the right motor are both used in all the
phases that can be described as basic behaviors: when the gripper is empty and the robot has
to look for a target (i.e. when sensor LB is off); when the gripper is carrying a target and the
robot has to look for a wall (i.e. when sensor LB is on); when the robot perceives something
and has to disambiguate between walls and targets (i.e. when the W/T graph shows the upper
or bottom line); when the robot does not perceive anything (i.e. when the ‘W/T’ graph does
not show any line); when the robot is approaching a target (i.e. when sensor LB is off and the
perceived object is a target); when the robot is approaching a wall (i.e. when sensor LB is on
and the perceived object is a wall); when the robot is avoiding a target (i.e. when sensor LB

18

is on and the perceived object is a target); when the robot is avoiding a wall (i.e. when the
sensor LB is off and the perceived object is a wall).

Figure 13. The top part of the figure represents the behavior of a typical evolved individual in its environment.
Lines represent walls, empty and full circles represent the original and the final position of the target objects
respectively, the trace on the terrain represents the trajectory of the robot. The bottom part of the figure
represents the type of object currently perceived, the state of the motor, and the state of the sensors throughout
time for 500 cycles respectively. The ‘W/T’ graph shows whether the robot is currently perceiving a wall (top
line), a target (bottom line), or nothing (no line). The ‘LM’, ‘RM,’ ‘PU’, and ‘RL’ graphs show the state of the
motors (left and right motors, pick-up and release procedures, respectively). For each motor, in the top part of
the graph the activation state is indicated (after the arbitration between component modules has been
performed by the selector neurons) and in the bottom part which of the two competing neural modules has
control is indicated (the thickness of the line at the bottom indicates whether the first or the second module
has control: thin line segment = module 1; thick line segment = module 2). The graphs ‘I0’ to ‘I5’ show the
state of the 6 infrared sensors. Finally, the ‘LB’ graph shows the state of the light-barrier sensor. The
activation state of sensor and motor neurons is represented by the height with respect to the baseline (in the
case of motor neurons the activation state of the output neurons of the module that currently have the control
is shown).

Similar results can be obtained by analyzing the other evolved individuals. When many
alternative neural modules are involved it becomes difficult to understand what is going on.
However, the general picture remains the same: neural modules or a combination of neural

19

modules does not appear to be responsible for single sub-behaviors. On the contrary each
sub-behavior is the result of the contribution of different neural modules.

By observing the behaviors of other evolved individuals (obtained by replicating the
simulation) it appears that different combinations of modules are used to produce different
motor responses for similar sensory stimuli when necessary. This happens most of the time,
as in the case of the individual described in Figure 13, when the robot has an object on its
frontal side and must decide whether to approach or avoid it or whether to try to pick it up or
not. Individuals with the other architecture described appear less able to produce sharp
discontinuities in behavior.

Once again we have found that decomposition-and-integration and adaptation lead to
qualitatively different ways of solving the same problem. While the decomposition and
integration approach implies a correspondence between basic behaviors and modules, it is
impossible to find such a correlation in evolved individuals which have modular neural
controllers.

5. Discussion

We claimed that artificial evolution can produce more simple and robust solutions than
a design process based on decomposition and integration. To support this hypothesis we
analyzed the case of a Khepera robot that should classify objects of different shapes by
remaining close to targets and avoiding walls. By comparing the solutions obtained by using
the decomposition-and-integration and the evolutionary approaches we concluded that the
latter approach allows more simple and robust solutions to be found (an extremely simple
neural network controller resulted perfectly able to solve the task).

We also claimed that evolution and decomposition-and-integration lead to qualitatively
different ways of solving the same problems. To support this hypothesis we showed how in
the case of the task described in Section 3 the evolutionary approach leads to a solution in
which the classification process is an emergent property of the dynamics between the
individual behavior and the environment. On the contrary, the decomposition and integration
approach leads to solutions in which the classification process is accomplished by a basic
behavior dedicated to this purpose and implemented in a separate sub-component of the
controller.

We have also shown how in the case of the more complex task described in Section 4,
evolution leads to a qualitatively different solution from that obtained using the
decomposition and integration approach. Modularity allows evolution to produce individuals
with the required ability more quickly and to discover more robust solutions. However, while
the decomposition and integration approach implies a correspondence between basic
behaviors and modules, it is impossible to find such a correlation in evolved individuals
which have modular neural controllers. Once again the two approaches lead to qualitatively
different ways of solving the same problem. In the case of the decomposition and integration
approach modularity is used to reduce the complexity of the controller parts to be designed or
learned. In the evolutionary approach instead, it is used to allow the controller to produce
very different motor responses in very similar sensory situations.

5.1 Evolution operate at a lower level than decomposition and integration

At this point we may try to understand why this happens. Why evolution leads to
qualitatively different types of solutions from decomposition and integration. Moreover why,
at least in the two cases discussed in this paper, evolution allows very simple solutions to be
found.

20

To understand the differences between evolution and decomposition-and-integration
we have to distinguish, as proposed by Sharkey and Heemskerk (in press), two ways of
describing behavior: a description from the point of view of the observer in which high level
terms such as “approach” or “attack” are used to describe the result of a sequence of
sensorimotor loops (distal description of behavior) and a description from the point of view
of the agent’s sensorimotor system that accounts for how the agent itself reacts in different
sensory situations (proximal description of behavior).

Artificial evolution operates at the level of the proximal description of behavior while
decomposition-and-integration imposes constraints at the level of the distal description of
behavior.

Consider the task of classifying objects with different shapes discussed in Section 3. In
the evolutionary approach discussed in section 3.2 evolution selects the weights of the neural
networks that determine the speed of the two motors for each possible state of the 6 sensors
(i.e. mapping between the sensory space and the motor space). A sequence of input-output
mappings, given a certain initial position of the robot and a particular environment, produce a
sequence of movements that can be described, at the distal level, as basic behaviors (e.g.
“avoid a wall” or “keep close to a target”). Evolution operates at the level of the proximal
description of behavior by selecting the weights of the neural controllers which in turn
determine the mapping between sensory stimuli and motor actions. Individuals are selected
on the basis of their ability to accomplish the whole task. Distal descriptions of behavior do
not play any role in the evolutionary process (see Figure 14).

Figure 14. Proximal and distal descriptions of behavior for the task described in Section 3. In the case of the
evolutionary approach, the basic behaviors (on top) are distal descriptions of sensorimotor sequences. Such
sequences are the result of the control system that maps sensory states into motor states and of the environment
that co-determines, together with the motor output of the individual, the next sensory stimulus of the individual
itself.

21

In the case of the decomposition and integration approach, on the contrary, the distal
description of behavior plays a role in the very first part of the design; the sub-division of the
problem into basic behaviors to be coordinated. A learning mechanism can then be used to
train the different modules to perform the corresponding expected basic behaviors (Dorigo
and Schnepf, 1993) and/or to coordinate them (Mahadevan and Connell, 1992). However the
learning process is limited by boundaries imposed by the distal description of the desired
behavior.

A similar situations can be observed in the second experiment described in Section 4.
Also in this case evolution operates at the level of the proximal description of behavior by
selecting the weights of the neural controller which in turn determines the mapping between
sensory stimuli and motor actions. Individuals are selected on the basis of their ability to
release objects outside the arena and for their ability to have objects in the gripper (for a
discussion on why this second criterion is necessary see Nolfi, in press). In this case
individuals have the possibility to use different modules for producing different parts of the
required sensorimotor mapping and they actually exploit this possibility by dividing the
sensorimotor mapping into sub-parts managed by different sub-networks (see Figure 15). To
exploit modularity thus evolution operates a decomposition and integration process. However
this process takes place at the level of the proximal description of behavior. As a
consequence no correspondence can be found by subdividing the sensorimotor mapping into
parts and by subdividing the whole behavior into basic behaviors as shown in Section 4.3.

Figure 15. Proximal and distal descriptions of behavior for the task described in Section 4. Distal descriptions
of sensorimotor sequences are represented at the top of the Figure. Such sequences are the result of the control
systems that maps sensory states into motor states and of the environment which co-determine, together with
the motor output of the individual, the next sensory stimulus of the individual itself. Sensorimotor mapping is
accomplished by different sub-parts of the controllers. Both the mapping and the sub-division into different
components are subjected to the evolutionary process.

22

5.2 Evolution reduces the complexity of the controller by exploiting the complexity of
the environment.

The previous section we attempted to explain why evolution and decomposition-and-
integration usually lead to qualitatively different solutions. In this last Section we will try to
explain how evolution can lead to simple solutions.

There are probably more than one answer to this question and we do not claim to be
exhaustive here.

A very general answer is the following: the distal description of a behavior is a function
not only of the controller determining how the agent reacts to each possible sensory stimulus
but also of the environment and of the agent’s sensory and motor apparatus. As a
consequence, simple controllers may be able to produce behaviors that, even if simple in a
proximal description, may appear complex in a distal description. As clearly shown by
Braitenberg (1984) the complexity of the behavior of an agent can largely be due to the
complexity of the environment and not of the agent itself. Evolution, by operating at the level
of the close description of behaviors, can shape individuals so to allow them to use the
complexity of the environment to produce behaviors that are complex at the level of the
distal description.

A clear example of this is the solution that our evolved individuals find to keep close to
the target. As we describe in Section 3 individuals, at a distal level of description, show a
dynamic behavior: they move back and forth close to the target. However, these individuals
cannot produce a dynamic behavior by themselves because they have simple sensorimotor
controllers that cannot keep trace of the past sensory stimuli or of past actions they have
performed. They behave in a way that, by exploiting the complexity of the environment
which co-determine their next sensory state, can be described as a dynamical behavior from a
distal description point of view.

Another good example is the way in which the evolved individual described in Section
3.3 classifies objects of different types by avoiding walls and approaching targets. As we said
this individual is able remain close to targets, only approaching them from about 30 to 60
degrees on the right side. At the same time this individual is able to approach targets from
this angle about 30% of the times. Conversely, he is able to approach walls from the left side
(the side from which he quickly avoids any abject) about 70% of the times. In other words
this individual exploits the regularities of the environment to increase the frequency of the
favorable sensory situations. It behaves in way that maximizes the probability of
encountering a target between 30 and 60 degrees on the right (i.e. the angular interval from
which he is able to approach it and to remain close to the target) and maximizes the
probability of encountering a wall from the left side (i.e. the side from which it quickly
avoids any object it encounter).

References

Braintenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA,
MIT Press.

Brooks, R. A. (1986). A roboust layered control system for a mobile robot, IEEE Journal of
Robotics and Autonomation, 2, pp.14-23.

Cliff, D. T., Harvey, I., and Husbands, P. (1993). Explorations in Evolutionary Robotics.
Adaptive Behavior, 2, pp.73-110.

Dorigo, M., and Schnepf, U. (1993). Genetic-based machine learning and behaviour based
robotics: A new synthesis. IEEE transaction on Systems, Man, and Cybernetics, 23, 1,
pp.141-154.

23

Gruau, F. (1995). Automatic definition of modular neural networks. Adaptive Behavior, 2,
pp.151-183.

Mahadevan, S., and Connell, J. (1992). Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55, pp.311-365.

Miglino, O., Lund, H. H., and Nolfi, S. (1995). Evolving mobile robots in simulated and real
environments. Artificial Life, (2) 4, pp.417-434.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile Robot miniaturisation: A tool for
investigation in control algorithms. In: Proceedings of the Third International
Symposium on Experimental Robotics, Kyoto, Japan.

Nolfi, S., Florano D., Miglino, O., and Mondada, F. (1994). How to evolve autonomous
robots: different approaches in evolutionary robotics. Artificial Life IV, Proceedings of
fourth International Workshop on the Synthesis and Simulation of Living Systems,
Cambridge MA, MIT Press.

Nolfi, S. (in press). Evolving non-trivial behaviors on real robots: a garbage collecting robot.
Journal Robotics and Autonomous System, special issue on “Robot learning: The new
wave"

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic Plasticity in Evolving Neural
Networks, in: D. P. Gaussier and J-D. Nicoud (eds.) Proceedings of the Intl. Conf.
From Perception to Action, Los Alamitos, CA: IEEE Press.

Rumelhart, D.E., Hinton G.E., and Williams, R.J. (1986). Learning internal representations
by error propagation. In D.E. Rumelhart, and J.L. McClelland (Eds.) Parallelel
Distributed Processing. Cambridge, MA, MIT Press.

Scheier, C., and Pfeifer, R. (1995). Classification as sensorimotor coordination: A case study
on autonomous agents. In F. Moran, A. Moreno, J.J. Merelo, P. Chacon (Eds.) Advances
in Artificial Life: Proceedings of the Third European Conference on Artificial Life,
Springer Verlag, pp.862-875.

Scheier, C., and Lambrinos, D. (1996).Adaptive Classification in Autonomous Agents. In:
Trappl, R. (ed.), Cybernetics and Systems '96 Proceedings of the 13th European Meeting
on Cybernetics and Systems Research EMCSR 96, Vienna, Austria, pp. 1037-1043

Sharkey, N. E., and Heemskerk, N. H. (in press). The neural mind and the robot, in A. J.
Browne (Ed.) Current Perspective in Neural Computing, IOP press.

