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Abstract 
We describe the results of a set of evolutionary experiments in which a 
simulated robotic arm provided with a two-fingered hand has to reach and grasp 
objects with different shapes and orientations on the basis of simple tactile 
information. Obtained results are rather encouraging and demonstrate that the 
problem of grasping objects with characteristics that vary within a certain range 
can be solved by producing rather simple forms of behaviour. These forms of 
behaviour exploit emergent characteristics of the interaction between the body 
of the robot, its control system and the environment. In particular we show that 
evolved individuals do not try to keep the environment stable but on the 
contrary push and pull the objects thus producing a dynamic in the environment 
and exploit the interaction between the body of the robot and the dynamic 
environment to master different environmental conditions with similar control 
strategies. 
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1. Introduction 

The problem of controlling a robotic arm is usually approached by assuming that the 
robot should have or should acquire through learning an internal model able to: (a) 
predict how the arm will move and the sensations that will arise, given a specific 
motor command (direct mapping), and (b) transform a desired sensory consequence 
into the motor command that would achieve it (inverse mapping), for a review see [7]. 
We do not deny that humans and other natural species rely on internal models of this 
form to control their motor behaviour. However, we do not believe that motor control 
and arm movements in particular are based on a detailed description of the sensory-
motor effects of any given motor command and of a detailed specification of the 
desired sensory states.  

Assuming that natural organisms act on the basis of a detailed direct and inverse 
mapping is implausible for at least two reasons. The first reason is that sensors 
provide only incomplete and noisy information about the external environment and, 
moreover, muscles have uncertain effects. The former aspect makes the task of 
producing a detailed direct mapping impossible, given that this would require a 
detailed description of the actual state of the environment. The latter aspect makes the 
task of producing an accurate inverse mapping impossible given that the sensory-
motor effects of actions cannot be fully predicted. The second reason is that the 
environment might have its own dynamic and typically this dynamic can be predicted 
only to a certain extent. For these reasons, the role of the internal models is probably 
limited to the specification of macro-actions or simple behaviours, rather than to 
micro-actions that indicate the state of the actuators and the predicted sensory state in 
any given instant. 

This leaves open the question of how macro-actions or simple behaviors might 
be turned into micro-actions. One possible solution to this problem is to imagine that 
macro-actions (i.e. basic motor behaviors such as grasping a certain class of objects in 
a certain class of environmental conditions) are produced through simple control 
mechanisms that exploit the emergent result of fine grained interactions between the 
control system of the organism, its body and the environment.  

To investigate this issue we ran a set of experiments in which we evolved the 
control system of a simulated robotic arm provided with a two-fingered hand that has 
to reach and grasp objects with different shapes and orientations on the basis of 
simple tactile information. As we will see, evolving individuals develop an ability to 
grasp objects in different environmental conditions without relying on direct and 
inverse mappings. 

In section 2 we describe the related work, in section 3 and 4 we present our 
experimental setup and the results obtained by evolving the robotic arm in different 
experimental conditions. In section 5 we discuss the obtained results and their 
implications. 



 

 

2. Related Work 

As far as we know, there have been only two attempts to apply evolutionary robotics 
techniques [1, 3] to the synthesis of robotic arms.  The first attempt has been done by 
Moriarty and Mikkulainen [2] who evolved the neural controller of a robotic arm with 
three degrees of freedom in simulation. The arm is initially placed in a random 
position and is asked to reach a random target position by avoiding obstacles. At any 
time step the neural controller receives as input the relative distance between the hand 
and the target position with respect to the three geometrical axis (x,y,z) and the state 
of 6 directional proximity sensors located in the hand. The robotic arm and the 
environment are simulated in a rather simplified way (e.g. collisions between objects 
are not simulated -- the authors simply stop the arm when its end point moves into a 
position occupied by an obstacle). The second attempt has been done by Skopelitis [6] 
who evolved the control system of a robotic arm with three degrees of freedom that is 
asked to follow a moving target. At any time step the neural controller receives as 
input the (x,y,z) coordinate of the target, the coordinate of the hand, the Euclidean 
distance between the hand and the target, and the coordinates of the "elbow" joint. 
Also in this case, the robotic arm and the environment are simulated in a rather 
simplified way (e.g. the target is not a physical object but only an abstract point of the 
environment and the arm has no mass and is not subjected to physical forces or 
collisions). 

In the experiments reported in this article we tried to evolve the neural controller 
for a much more complex robotic arm provided with a two-fingered hand that is asked 
to grasp objects. The arm and the environment are carefully simulated (see below) 
and the controller is only provided with simple touch and proprioceptive sensors (i.e. 
it does not have access to information that cannot be computed by local sensors such 
us the distance with respect to the target position). 

3. The Robotic Arm and the Neural Controller 

3.1 The robotic arm 

The robot consists of an arm with six degrees of freedom (DOF) and a two-fingered 
hand provided with three DOF (Figure 1, left). The arm consists of three connected 
basic structures forming two segments and a wrist. Each basic structure consists of 
two bodies connected by two motorized joints (Figure 1, centre). More precisely, each 
basic structure (Figure 1, bottom-right) consists of a parallelepiped with a size of 
[x=25, y=15, z=25] cm and a weight of 4.6 Kg and a cylindrical object with a radius 
of 12.5 cm, a length of 50 cm, and a weight of 12.3 kg (a length of 10 cm and a 
weight of 2.5 Kg in the case of the last cylindrical object that forms the base of the 
hand). Parallelepipeds are connected to the previous segment or to a fixed point (in 
the case of the first segment) by means of a rotational joint (R_Joint) that provides 
one DOF on axis Y. Cylinders are connected with parallelepipeds by means of an 
elevation joint (E_Joint)  that allows only one DOF on axis Z. In practice, the E_Joint 
controls the elevation/lowering of the next connected segments and the R_Joint  
controls the rotation in both directions of the next connected segments. The E_Joint is 



 

 

free to move only between 0 and π/2, just like an human arm that can bend the elbow 
solely in one direction. The range of R_Joint is [-π/2, +π/2] for the first two and is [0, 
π] for the last basic structure. 

 

                                     
 
Figure 1. Left: The arm and the hand. Centre: A schematic description of the elements 
forming the arm and the hand. Right: A schematic description of the motorized joints that 
connect the different elements of the arm and of the hand. The exact orientation of the arm 
along the three axis is shown in Figure 3.  
 
The hand consists of two fingers made of two parallelepipeds with a size of [x=5, 
y=20, z=20] cm and a weight of 1 Kg connected by two motorized joints (O_Joint 
and P_Joint) to the last cylindrical object forming the arm. These two joints, that 
allow the fingers to open and close, can move only in a range of [-π/10, π/6] and [-
π/10, π/4] respectively (Figure 1, right up). The first finger has an additional phalange 
consisting of a parallelepiped with a size of [x=5, y=20, z=25] cm and a weight of 
1.25 Kg connected by a motorized joint (o_Joint) to the previous part of the finger. 
This additional joint that allows the finger to close its upper part can move in the 
range of [0, π/2]. 

Each actuator is provided with a corresponding motor that can apply a maximum 
torque of 10 Nm. Friction coefficient is set to 0.7 and the acceleration of gravity is –
0.098 m/ds2. 

This means that to reach and grasp an object the robot has to appropriately 
control 9 joints and to deal with the constraints due to gravity and collisions.  

The sensory system consists of six contact sensors (three placed on the three 
cylindrical objects forming the arm and the wrist and three placed on the three 
parallelepipeds forming the two fingers) that detect, in a binary fashion, whether these 
bodies collide with other bodies. Moreover, robots have nine proprioceptive sensors 
that encode the current angular position of the nine corresponding motor joints 
controlling the arm and the fingers. 

The environment consists of a planar surface (at height 0) and an object (e.g. a 
ball, a cube or a bar) placed on the surface (see Figure 3). The first element of the arm 
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is anchored to a fixed point [x=0, y=115, z=0] cm and is oriented along the vector [0,-
0.86,-0.5]. 

To reduce the time necessary to test individual behaviours and to model the real 
physical dynamics as accurately as possible, we used the rigid body dynamics 
simulation SDK of VortexTM (see http://www.cm-labs.com/products/vortex/). This 
software allowed us to build a rather realistic simulation and to speed up the 
evolutionary process by allowing simulated robots to move faster than real physical 
robots. 

3.2 The neural controller 

Each individual is controlled by a fully connected neural network with 15 sensory 
neurons and 9 motor neurons. Neurons are updated with the logistic function. 

 

    proprioceptive sensors             contact sensors 

    motors        

 
 
Figure 2. The architecture of the neural controller. 

 
The sensory neurons encode the angular position (normalized between 0.0 and 

1.0) of the 9 DOF of the joints and the state of the six contact sensors located in the 
arm and in the fingers. The motor neurons control the actuators of the 9 corresponding 
joints. The output of the neurons is normalized within the range of movement of the 
corresponding joint and is used to encode the desired position of the corresponding 
joint. More precisely, motors are activated so as to reach a speed proportional to the 
difference between the current and the desired position of the joint (maximum motor 
speed is 500 deg/sec). 

The genotype of evolving individuals encodes  the connections’ weights and the 
biases of the neural controller. Each parameter is encoded with 8 bits. Weights and 
biases are normalized between –10.0 and 10.0. Population size is 100.  

The 20 best individuals of each generation were allowed to reproduce by 
generating 5 copies of their genotype which were mutated by replacing 2% of 
randomly selected bits with a new randomly chosen value. Each experiment was 
replicated 10 times. 

Each individual of the population was tested for a given number of trials, with 
each trial consisting of a given number of steps (each step lasts 5 ms of real time). At 
the beginning of each trial the arm and the hand is set in the initial position and an 
object is placed on top of a planar surface.  The starting angles of the three E_Joints 



 

 

are set to 0, 70 and 30 degrees respectively, those of R_Joints are set to 0, -30 and  20 
degrees, those of the O_Joints, o_Joint and P_Joint are set to 0 degrees (see Figure 3). 
During each time step: (1) the state of the sensory neurons is updated, (2) the 
activation state of internal (if present) and motor neurons is determined, (3) the 
desired speed of the motors controlling the joints is set according to the actual state of 
the motor neurons, and (4) the dynamic of the arm and of the environment is updated 
on the basis of the length of the time step and of the current forces and collisions. 

To verify in a simple way if the object has been correctly grasped or not, in 
every trial we removed the planar surface after a certain number of time steps and 
after another time interval we checked whether the object fell down (i.e. if the arm did 
not grasp it) or not (i.e. if the arm did grasp it). Please notice that we cannot remove 
the planar surface from the beginning because otherwise the object would fall down 
before the arm can reach it. 

 Evolving individuals were scored on the basis of the number of objects they 
were able to grasp during a fixed number of trials. In addition, to facilitate the 
emergence of an ability to grasp objects, we also rewarded individuals for their ability 
to touch the object with their fingers (i.e. we used a form of incremental evolution 
[3]). More precisely the fitness of an individual was computed according to the 
following equation: 

 
fitness = (GP * 10000) + NC 

 
where GP is the number of objects that have been successfully grasped (i.e. that have 
an y coordinate higher or equal to 25 cm and that collided with at least one of the 
finger at the end of the corresponding trial), and NC is the number of collision 
between the objects and the fingers of the hand during the whole lifetime of an 
individual. 

4. Experimental results 

4.1 Grasping Cubic or Spherical Objects with Different Size, Weight and 
Orientation 

In a first set of experiments we asked evolving individuals to grasp cubic or spherical 
objects with different size, weight and orientation. Each individual was tested for 20 
trials, each trial consisting of 800 steps (the plane is removed after 700 steps). During 
its life each individual experienced 10 spherical and 10 cubic objects that were 
located in the following position [x=100, z=0] cm (the y coordinate was set 
proportionally to the size so as to assure that the object lays on the plane). The size, 
weight and orientation of the objects was randomly chosen in each trial from a given 
range. The side of cubic objects varied between 15 and 20 cm and the radius of 
spherical objects varied between 10 and 15 cm. The density of the objects varied 
between 100 and 500 kg/m3. The orientation varied between 0 and 90 degrees along 
the Y axis. 

By running 10 evolutionary experiments for 50 generations we observed (see 
Figure 4) that evolving individuals display rather good performance (up to 100% of 



 

 

successful trials in the case of the best replication and up to 83.6% of successful trials 
on average). 

 

          
 

Figure 3. The arm and the hand in their initial position and the environment. The environment 
consists of a cubic or a spherical object laying on a planar surface. 
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Figure 4. Fitness obtained by testing the best individuals of each generation for 100 trials. Thin 
line: performance in the case of the best replication. Thick line: average performance of 10 
replications of the experiment. 
 
The analysis of the behaviour displayed by evolved individuals shows that evolved 
robots are able to reach and grasp different types of objects with different sizes and 
weights by mastering the dynamical interaction between the objects and the hand. 
Indeed, as shown in Figure 5, the robot approaches the object from its top-left side 
with its hand open and starts to close the hand as soon as it detects the object with the 
contact sensors of the fingers. However, while grasping the object, the robot also 
rotates the hand on the right side. This movement from left to right allows the robot to 
block the movement of the object (caused by the collision between the hand and the 
object) with the hand itself and allows the robot to exploit the properties emerging 
from the dynamical interaction between the moving object and the hand. Indeed, as a 



 

 

result of the initial collision between the hand and the object and of the successive 
rotation of the hand, objects tend to move toward the inner part of the hand and 
spontaneously adjust small misplacements resulting from the fact that objects have 
different sizes and orientations. 
 

    

    
 
Figure 5. A typical behaviour displayed by an evolved individual. The eight pictures (from left 
to right and from top to bottom) show eight snapshots of a trial in which the robot approaches 
and grasps a cubic object.  

4.2 Grasping Bars with Different Weights and Orientations 

In a second set of experiments we asked evolving individuals to grasp bars with 
different weights and orientations (Figure 6). Given that bars can only be grasped by 
placing the hand in the right relative orientation with respect to the object, we might 
expect that to solve this problem robots should first detect the orientation of the bar 
and then approach the object appropriately. As in the case of the previous experiment, 
however, by exploiting the interaction between the hand and the object evolving 
individuals develop a simpler solution that consists in modifying the orientation of the 
bar. 

The size of bars is [x=15, y=15, z=50] cm. Each individual was tested for 30 
trials, with each trial consisting of 1000 steps (the plane is removed after 900 steps). 
In each trial the barycentre of the bar is initially placed in the position [x=100, y=7.5, 
z=0], the orientation is randomly chosen between 0 and 180 degrees along the Y axis, 
and the weight is randomly chosen between 100 and 200 kg/m3 (see Figure 6). The 
evolutionary process was continued for 100 generations. All other parameters are 
identical to those of the experiment described in section 4.1. 

 



 

 

 
Figure 6.  The arm and the bar at the beginning of a trial. The orientation and the weight of the 
bar is randomly chosen in every trial within a given range (see text).  

 
Also in this experiment evolving individuals display a rather good performance (up to 
97% of successful trials in the case of the best replication and up to 76.4% of 
successful trials on the average) (see Figure 7).  
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Figure 7. Fitness obtained by testing the best individuals of each generation for 100 trials. Thin 
line: performance in the case of the best replication. Thick line: average performance of 10 
replications. 
 



 

 

 
 
Figure 8. A typical behaviour displayed by an evolved individual. The eight pictures (from left 
to right and from top to bottom) show eight snapshots of a trial in which the robot approaches 
and grasps a bar with a randomly selected orientation.  
 
The analysis of the behaviour displayed by evolved individuals shows that most of the 
times, evolved robots are able to reach and grasp bars independently from their 
relative orientation and weight. As shown in Figure 8, the robot approaches the object 
from the left side and, while grasping the object, also rotates the bar toward the 
preferred orientation (in the case of this individual, the orientation that the bar has in 
the bottom-right picture). In other words, evolved robots do not need to detect the 
current orientation of the bar and then approach the object from different orientations 
according to the actual position of the bar. They solve the problem with a rather 
simple behaviour by exploiting the dynamical interaction between the hand and the 
environment. In particular, the bar-rotation behaviour emerges from the simple 
approaching behaviour produced by the robot, the different length of the two fingers, 
and the effect of the collisions between the hand and the bar, produced by the 
movements of the arm and of the fingers. 
 

4.3 Grasping Cubic Objects with Different Weights, Orientations and Positions  

In the third set of experiments we asked evolving individuals to grasp cubes with 
varying weights, orientations and positions. The goal of this third set of experiments 
was to verify the possibility to evolve robots that apart from being able to grasp 
objects in varying conditions, are also able to find objects by exploring the 
environment.  

Each individual was tested for 20 trials, with each trial consisting of 800 steps 
(the plane is removed after 700 steps). During its lifetime each individual dealt with 
cubic objects with a size of 20 cm that were randomly located in a rectangular area 
with an upper left corner in [x=125, y=10, z=-50] and a lower right corner in [x=75, 
y=10, z=50]. The weights and orientations of the objects were randomly chosen, 
within a given range, in each trial. The density of the objects varied between 100 and 
500 kg/m3. The orientations varied between 0 and 90 degrees along the Y axis. 
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Figure 9. The architecture of the neural controller. 
 
By running several set of experiments in which we varied the neural architecture and 
the sensory structure of the hand (results not shown), we observed that to solve this 
problem evolving robots should have: (1) more resolution on contact sensors (i.e. the 
possibility to detect more precisely the location of the hand that gets in contact with 
external bodies or other parts of the robot itself), and (2) additional internal neurons 
(see Figure 9). In particular close to optimal performances (i.e. up to 89% of objects 
grasped correctly, see Figure 10) were achieved: (1) by providing each segment of the 
fingers with two different contact sensors placed on the interior and the exterior part 
of each segment and by providing the two fingers with two additional contact sensors 
placed on the tip parts of the fingers, (2) by providing the neural controllers with four 
internal neurons receiving connections from the sensory neurons and from themselves 
and projecting connections to the motor neurons. Therefore, in these experiments the 
neural controllers have 20 sensory neurons (9 encoding the angular position of the 
joints and 11 encoding the state of the contact sensors), 9 motor neurons controlling 
the 9 corresponding motorized joints, and 4 internal neurons receiving connections 
from sensory neurons and from themselves and sending connections to motor neurons 
(see Figure 9).  

The activation state of internal neurons was updated accordingly to the 
following equation (see [4] for more details): 
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With Aj being the netinput of the jth neuron, tj the bias of the jth neuron, Wij the 

weight from the ith to the jth neuron, Oi the output of the ith neuron. Oj is the output 
of the jth neuron, τj the time constant of the jth neuron. The time constants of neurons 
were genetically encoded. 

The evolutionary process was continued for 150 generations. All other 
parameters are as those of the experiments reported in the previous sections. 
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Figure 10. Fitness obtained by testing the best individuals of the best replication of each 
generation for 100 trials. Thin line: performance in the case of the best replication. Thick line: 
average performance of 10 replications.  
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Figure 11. The trajectory on the x and z plane of the hand during different trials. Thick line: 
trajectory in an environment without objects. Thin lines: trajectory with the cubic object placed 
in randomly varying positions and orientations. 
 
The need of a higher resolution in contact sensors can be explained by considering 
that the variation in the position of the object causes a significant variation in the 
relative position between the hand and the object when they first come into contact. 
This, in turn, causes the need to tune the grasping behaviour on the basis of the 
relative position of the hand and of the object. This position can be properly detected 



 

 

only by having more contact sensors (i.e. more detailed information on the positions 
in which contacts occur). Indeed, as shown in Figure 11, evolved individuals display 
an ability to tune their approaching and grasping behaviour for different positions of 
the object. As shown in the figure, the trajectory of the hand significantly varies in 
different trials as soon as the hand first detects the object with its touch sensors 
according to the actual position and orientation of the object itself. 

The need of internal neurons with recurrent connections can be explained by 
considering that in this experiment, the robot should significantly modify its 
behaviour according to the current position of the object to be grasped (see Figure 11) 
by taking into account not only the current but also the previous sensory states. 

5. Discussion 

In this paper we present a set of evolutionary robotics experiments in which simulated 
robotic arms provided with a two-fingered hand develop the ability to reach and grasp 
objects with different locations, shapes and orientations on the basis of simple tactile 
information. Obtained results are rather encouraging and demonstrate that the 
problem of grasping objects with characteristics that vary within a certain range can 
be solved by producing rather simple behaviours. These behaviours exploit emergent 
characteristics of the interaction between the body of the robot, its control system, and 
the environment. In particular we showed that in all cases, evolved individuals do not 
try to keep the environment stable but, on the contrary, push and pull the objects thus 
producing a dynamic in the environment. Moreover, they exploit the interaction 
between their body and the dynamical environment to master rather different 
environmental conditions with rather similar control strategies. 

The results of these experiments demonstrate that the evolutionary robotic 
approach can scale up to the development of robots with many degrees of freedom 
that are able to operate robustly in varying and dynamical environmental conditions. 
Indeed, the ability to exploit properties that emerge from the dynamical interaction 
between the control system of the robot, its body, and the external environment allows 
the evolutionary process to find solutions that are simple and robust (see also [4-5]).  

In future work we plan to: (a) apply this method to the development of a control 
system for a real robotic arm, (b) develop controllers provided with different neural 
modules capable of displaying different classes of behaviours and capable of 
arbitrating between the different modules.  
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