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Abstract

Recently a new way of building control systems, known as behavior based
robotics, has been proposed to overcome the difficulties of the traditional AI
approach to robotics. Most of the work done in behavior-based robotics involves a
decomposition process (in which the behavior required is broken down into
simpler sub-components) and in an integration approach (in which the modules
designed to produce the sub-behaviors are put together). In this paper we claim that
the decomposition and integration process should be the result of an adaptation
process and not of the decision of an experimenter. To support this hypothesis we
show how in the case of a simple task in which a real autonomous robot is
supposed to classify objects of different shapes, by letting the entire behavior
emerge through an evolutionary technique, a more simple and robust solution can
be obtained than by trying to design a set of modules and to integrate them.

1 Introduction

Recently a new way of building control systems, known as behavior based robotics,
has been proposed to overcome the difficulties of the traditional AI approach to
robotics. This new approach is based upon the idea of using simple sensorimotor
processes, operating in parallel, to enable robots to react quickly and robustly in noisy
environments.

Most of the work done in behavior-based robotics focuses on the process of
breaking down the desired behavior into an appropriate set of behavioral modules and
in (a) the design of a coordination technique powerful enough to produce the correct
integration of the designed sub-behaviors (Brooks, 1991) or (b) the attempt to design
the behavioral modules in such a way as to allow them to freely cooperate or compete
to achieve a coherent behavior without the need of a coordination structure (Steels,
1994).

We believe that both these approaches are insufficient and that the process of
breaking down the required behavior into sub-components should be the result of an
adaptation process and not of a decision of the experimenter (see also Dorigo and
Schnepf, 1993). To support this hypothesis we show how in the case of a simple task
which requires the ability to classify objects of different shapes, by letting the entire
behavior emerge through an evolutionary technique, a more simple and robust solution
can be obtained than by trying to design a set of modules and to coordinate them.
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2. The problem

Having at our disposal a Khepera robot we decided to try to develop a control
system for such a robot that could to distinguish between objects with different shapes.

Khepera (Figure 1) is a miniature mobile robot developed at E.P.F.L. in Lausanne,
Switzerland (Mondada, Franzi, and Ienne, 1993). It has a circular shape with a diameter
of 55 mm, a height of 30 mm, and a weight of 70g. It is supported by two wheels and
two small Teflon balls. The wheels are controlled by two DC motors with an
incremental encoder (10 pulses per mm of advancement by the robot), and can move in
both directions. The robot is provided with eight infra-red proximity sensors (six
sensors are positioned on the front of the robot, and the remaining two on the back) but
in this paper we will refer only to the six frontal sensors.

Figure 1. The Khepera robot.

The environment of the robot is  a rectangular arena of 60x35 cm surrounded by
walls which contains  a target object. The walls are 3 cm in height, made of wood, and
are covered with white paper. The target object consists of a cylinder with a diameter of
2.3 cm and a height of 3 cm. It is made of cardboard and covered with white paper. The
target is positioned in the center of the arena.

The robot has to distinguish between walls and target objects. In particular we want
the robot to explore the environment, avoiding walls and remaining close to targets
when it finds them.

In order to train the robot we used a simulator of the robot and of the environment
(see Nolfi, Floreano, Miglino, and Mondada, 1994). However, we then tested the
trained controller on the real robot in the real environment.

A sampling procedure was used to calculate the activation state of the infra-red
sensors. The walls and the target objects were sampled by placing the physical Khepera
in front of one of them, and by letting it turn 360o, recording, at the same time, the state
of the infra-red sensors at different distances with respect to the objects. The activation
level of each of the eight infra-red sensors was recorded for 180 different orientations
and for 20 different distances. In this way two different matrices of activation were
obtained for the two types of objects (walls and target). These matrices were then used
by the simulator to set the activation state of the simulated sensors depending on the
relative position of Khepera and of the objects in the simulated environment (when
more than one object was within the range of activation of the sensors, the resulting
activation was computed by summing the activation contribution of each object). This



3

sampling procedure had the advantage of taking into account the fact that different
sensors, even if identical from the electronic point of view, actually responded
differently. Sampling the environment throughout the real sensors of the robot allowed
us, by taking into account the characteristics of each individual sensor, to develop a
simulator shaped by the actual physical characteristics of the individual robot we had.

The effects of the two motors were sampled similarly by measuring how Khepera
moved and turned for a subset of the 20x20 possible states of the two motors. At the
end of this process a matrix was obtained that was then used by the simulator to
compute the displacements of the robot in the simulated environment.

In section 3 we describe an attempt to solve the task by using a decomposition and
integration approach, while in section 4 we describe a similar attempt using an
evolutionary approach in which the decomposition and integration process was
performed by the training algorithm. In both cases we used neural networks with
different architectures to implement the controllers.

3 Designing by decomposition and integration

In order to accomplish the task described we can break down the required behavior
into simpler behaviors and develop a set or modules able to accomplish the required
sub-behaviors. In our case we can break down the required behavior into: (a) moving in
order to explore the environment, (b) recognizing objects, (c) avoiding objects, (d)
approaching and remaining close to an object. Once we have modules able to produce
these sub-behaviors we have to design a coordination mechanism that can decide which
module has to take control each time step or else design the modules and the
corresponding behaviors in such a way that, by letting all of them run in parallel, the
interference arising from the interaction between different modules does not impair the
accomplishment of the task.

The first module, the third and the fourth modules (i.e. exploring the environment,
avoiding objects, and approaching objects) are easy to design and have been
implemented several time on Khepera and on other robots. On the contrary, the second
module (i.e. classifing sensory stimuli) is not so easy to design. However, because
fortunately we know if an input pattern corresponds to a wall or to a target, we can use
a supervised learning procedure in order to train a system (for example a neural
network) to classify the two types of input stimuli.

We tried 3 different architectures: (a) a feedforward architecture with two layers, an
input layer with 6 neurons (coding the activation of the 6 corresponding infrared
sensors) and one output neuron (coding with 0 for wall and 1 for targets); (b) an
architecture with an additional internal layer with four units; (c) an architecture with an
additional internal layer with 8 units. For each architecture we ran 10 training processes
starting with different randomly assigned initial weights. Networks were trained by
back-propagation (Rumelhart, Hinton, and Williams 1986) for 5000 epochs. A learning
rate of 0.02 and no momentum were used. During each epoch, networks were exposed
to the sensory patterns perceived by the robot at 20 different distances and at 180
different angles with respect to a wall and to a target, for a total of 7200 different
patterns.

Figure 2 shows the percentage of positions from which the networks were correctly
able to classify the two types of stimuli (i.e. to produce an activation value below 0.5 in
the case of a wall and above 0.5 in the case of a target) for each of the three different
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architectures. As can be seen, networks were able to correctly classify only 22% of the
cases for networks without hidden units and about 35% of the cases for networks with
the additional layer of 4 hidden units. The addition of other hidden units did not allows
to obtain better performance.

%
 c

or
re

ct

0

5

10

15

20

25

30

35

40

no-hidden 4-hidden 8-hidden

average
peak

Figure 2. Percentage of positions from which sensory stimuli are correctly classified by network withs
no hidden units, 4 hidden units, and 8 hidden units. Average and peak performance of 10 different
simulations for each condition. For 20 different distances and 180 different angles (3600 different
positions in all) networks were required to produce an output above or below the threshold, depending
on the type of object. Responses were considered correct if, in a given position, the network was able to
correctly classify both the wall and the target.

The fact that only some of the stimuli can be correctly classified can be explained if
we consider that, given the sensory apparatus of the robot, objects can be disambiguated
only at a given angle and distance. In other words they are ambiguous in the other
cases. If we look at Figure 3, which represents the positions (i.e. the combination of
angle and distance) from which networks are able to correctly classify the sensory
patterns, we see that stimuli can be correctly classified if the objects are not more than
120o to the left or the right of the robot face and no more than 32mm away. In addition,
there are two zones in which the objects cannot be correctly disambiguated even though
they correspond to positions located at about 60o to the left or the right and a short
distance away from the objects.

It is also interesting to note that the zones in which stimuli can be correctly
disambiguated are not symmetrical. This has to do with the fact that different sensors,
even if identical from the electronic point of view, actually respond differently. As a
consequence, it is clear that whether stimuli are ambiguous or not is a function of both
the structure of the stimuli themselves and of the sensory apparatus of the agent.

Given these results we can see that a simple feedforward neural networks,
irrespective of the number of internal neurons, is unable to correctly classify the
incoming input patterns in our environment. In fact, most of the times the network
produces incorrect classifications as shown in Figure 2 and 3.

A possible solution to this problem is to add an additional module capable of
deciding when the incoming stimuli can be correctly classified by a network of the type
described above. When stimuli cannot be classified, the robot can continue to approach
the object until a classifiable stimulus is encountered.
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Figure 3. Stimuli correctly classified for each combination of distance and angle of the robot with
respect to the objects. The three pictures (from top to bottom) represent the result for the best
simulation with no hidden, 4 hidden, and 8 hidden units, respectively.

Scheier and Pfeifer (1995), who developed the control systems for a Khepera robot
that performed a task very similar to the one described in this paper, proposed and
implemented another interesting solution (see also Scheier and Lambrinos, 1995). Their
environment is an arena surrounded by walls containing large and small pegs and a
home base with a light source attached to it. The robot has to bring the small pegs to its
home base and as a consequence has to distinguish between small pegs from large pegs
and walls. In order to accomplish this task the authors designed a set of elementary
behaviors (move forward, turn toward objects, avoid obstacles, grasp, and bring to the
nest) and allowed them all to run in parallel in order to obtain the desired behavior.
Because the robot was programmed to turn around objects and the shape of the object
determined the angular velocity of the turning, they decided to train a network to
associate the vectors of angular velocities that corresponded to small pegs with grasping
behavior and the other vectors of angular velocity with avoiding behavior.

It thus appears possible to find a solution to the problem of classification in this
robot-environment context. However, in the next section we will show that by using a
different approach a simple feedforward network without hidden units can be trained
not only to correctly classify the two types of objects but also to perform the entire
required behavior without the need to add any other neural structure.
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4 Designing by evolution

Another way to design the control system for an autonomous robot is to use an
evolutionary robotics approach (i.e. to try to develop autonomous robots through an
automatic design process involving artificial evolution). This approach does not require
the required behavior to be broken down into sub-components because the complete
solution of the task is expected to emerge during the evolutionary process.

Evolutionary Robotics approaches are based on the genetic algorithm technique
(Holland, 1975). An initial population of different "genotypes", each codifying the
control system (and possibly the morphology) of a robot are created randomly. Each
robot is evaluated in the environment and to each robot is assigned a score ("fitness")
corresponding to the ability of the robot to perform some desired task. The robots that
have obtained the highest fitness are then allowed to reproduce (sexually or agamically)
by generating copies of their genotypes with the addition of random changes
("mutations"). The process is repeated for a certain number of generations until,
hopefully, desired performances are achieved (for methodological information see
Nolfi, Floreano, Miglino and Mondada, 1994).

To evolve neural controllers able to perform the task described in section 2 we used
a form of genetic algorithm. We began with 100 randomly generated genotypes, each
representing a network with a different set of randomly assigned connection weights.
This was Generation 0 (G0). G0 networks were allowed to "live" for 5 epochs, with
each epoch consisting of 500 actions. At the beginning of each epoch the robot was
randomly positioned in the arena far from the target. At the end of their life, individual
robots were allowed to reproduce. However, only the 20 individuals which had
accumulated the greatest fitness (see below) in the course of their life reproduced
(agamically) by generating 5 copies of their neural networks. These 20x5=100 new
robots constituted the next generation (G1). Random mutations were introduced in the
copying process, resulting in possible changes of the connection weights. The process
was repeated for 100 generations.

Individuals were scored for the number of cycles spent at a distance lower that 8 cm
from the target. This meant that individuals had a probability to reproduce that was
proportional to their ability to find the target quickly and to remain close to it.

We tried 3 different architectures and for each of them we ran 10 simulations
starting with different randomly assigned weights. All architectures had 6 sensory
neurons clamped to the 6 frontal infrared sensors and 2 motor neurons clamped to the
left and right motors of Khepera. The three architectures differed in the number of
internal units: the first architecture did not have any internal layer, the second had an
internal layer with 4 units, and the third had an internal layer with 8 units.

If we look at the fitness of individuals throughout generations we can see how, after
a few generations, the best individuals, by incorporating an ability to avoid walls,
explore the environment and keep close to the target, are able to earn very high fitness
rate by spending most of their time close to the target objects.

It should be noted that networks without internal units are able to solve the task
perfectly well. As a consequence the addition of internal units does not produce any
improvement in performance and, indeed, result in less efficient individuals in average
(see the graph on the right side of Figure 4). This can be explained by the fact that the
addition of useless internal neurons, which require longer genotypes, merely enlarge the
space to be searched by the genetic algorithm.
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Figure 4. Fitness (i.e. number of cycles, out of 2500, spent close to the target) throughout generations
for the three different architectures. The graph on the left shows the performance of the best individual
in each generation, while the graph on the right shows the average performance of each generation.
Each curve represents the average result of 10 simulations starting with different initial weights.

Nevertheless individual networks have been trained in simulation, the evolved
individuals were then downloaded and tested on the real robot and were find to be
capable of performing the task perfectly well. No significant difference was observed
between behavior in the simulated and real environments in most of the individuals
tested (for more information about this point see Miglino, Lund, and Nolfi, in press).

Figure 5 shows the behavior of a typical evolved individual. The robot, after being
placed in front of a wall on the right hand side of the environment, recognizes and
avoids the wall, recognizes and avoids the new wall it encounters, and finally finds and
keeps close to the target. All individuals, like the one shown in the figure, never stop in
front of the target, but start to move back and forth as well as slightly to the left and
right remaining at a given angle and distance with respect to the target (see graphes ‘a’
and ‘d’ representing the angle and the distance of the robot with respect to the closest
object over time).

Figure 5. The top part of the figure represents the behavior of a typical evolved individual without
internal units. The lines represent walls, the full circle in the center of the arena represents the target
object, the large empty circle around the target represents the area in which the robot is rewarded, the
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small empty circle represents the position of the robot after 500 cycles, finally the trace on the terrain
represents the trajectory of the robot. The graphs in the bottom part of the figure represent the angle and
the distance of the robot with respect to the closest object (a,d), the state of the two motor neurons
(o0,o1), and the state of the 6 infrared sensors (i0 to i5) over time.

Interestingly enough, the positions relative to the target that individual robots (with
and without internal units) maintain once the target has been found, are not located in
the discriminative area, that is in the area in which targets and walls can be correctly
classified by a network without hidden units (see Figure 3). On the contrary, individual
networks do usually start to move back and forth when they reach an area that overlaps
the border between the discriminative and non discriminative areas as is shown in
Figure 6.

Figure 6. The top picture represents the stimuli that can be correctly classified by an evolved network
without internal units (same data as Figure 3). The picture on the bottom represents, in black, the
relative positions (angular and distance combinations) that a typical evolved individual assumes with
respect to a target once the target has been reached. Each point represents the combination of angle and
distance with respect to the target during one cycle.

By analyzing the strategy of the other evolved individuals we observed that, because
of the asymmetries in the sensory system and because of the different initial conditions
of the evolutionary process, they varied in the relative positions assumed in front of the
target (some stop with the target in front or almost in front of them, others with the
target on the right side, and only a few with the target on the left side). However all,
once they reach the target, start to move back and forth in an area that, as the case
shown in Figure 6, overlaps the discriminative area. Therefore all use a strategy that is
different from the one we hypothesize as a solution to the problems encountered in
section 3 in trying to design the control system with the decomposition and integration
approach.

Conclusion

We claimed that behavior based robotics would not be able to successfully
overcome the problems encountered with traditional AI by using a decomposition and
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integration procedure for the development of control systems for autonomous robots.
The decomposition and integration process should be the result of an adaptation process
and not of the decision of an experimenter who has at his disposal only a few trials.
Artificial evolution can be an answer to this type of problem because it allows the
supervision of the experimenter to be limited to the design of the evaluation criterion
and of the evolutionary conditions without requiring the experimenter to choose how to
decompose and integrate the problem.

We took the case of a real problem: trying to design the control system for an
autonomous robot capable of navigating in an environment and to classify different type
of objects and we showed how following the decomposition and integration approach
serious problems are encountered that require complex solution while, by following the
evolutionary approach, a simple and robust solution can be easily obtained. This
solution has also been proven to scale up in another work in which the robot has been
successfully trained to pick up the target objects and bring them out of the arena (Nolfi
and Parisi, 1995; Nolfi, 1996).

We also showed how the type of solutions discovered by evolution are different
from those that we and other researchers (Scheier and Pfeifer,1995) have hypothesized
for the purpose of solving the task described following the decomposition and
integration approach. In particular, we showed how by intensively using an active
perception strategy the evolved individuals can overcome the problem posed by the fact
that the two classes of stimuli are ambiguous in most cases and in particular in some of
the positions which are critical because they are the positions occupied by the robot
when it remains close to the target as required.
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