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Abstract 
 
In this paper we address the problem of synthesizing mobile robots able to solve problems in 
which they cannot merely react to sensory input, but have to maintain an internal state as well.  
More precisely we will show how autonomous robots synthesized through an evolutionary process 
can solve problems that necessarily require an ability to integrate sensory-motor information over 
time. By presenting the result of a set of experiments in which evolving robots are asked to 
navigate and self-localize in the environment, we will show that successful results can be achieved 
by providing evolving individuals with neural controllers with neurons that (a) vary their activity 
at different rates to detect regularities at different time scales in the sensory-motor flow, and (b) 
use thresholded activation functions to detect events extending over time.  

1 Introduction  

A new research paradigm, that has been called Embodied Cognitive Science (Varela, Rosch, 
and Thompson, 1991; Brooks, 1991; Clark, 1997; Pfeifer and Scheier, 1999), has recently 
challenged the traditional view according to which intelligence is an abstract process that can 
be studied without taking into consideration the physical aspects of natural systems. In this 
new paradigm, researchers tend to stress (1) situatedness, i.e., the importance of studying 
systems that are situated in an environment (Brooks, 1991,  Clark, 1997), (2) embodiment, 
i.e., the importance of study systems that have bodies, receive input from their sensors and 
produce motor actions as output (Brooks, 1991; Clark, 1997), and (3) emergence, i.e. the 
importance of viewing behavior and intelligence as the emergent result of fine-grained 
interactions between the control system of an agent including its constituents parts, the body 
structure, and the environment. An important consequence of this view is that the agent and 
the environment constitutes a single system, i.e. the two aspects are so intimately connected 
that a description of each of them in isolation does not make much sense (Marturana and 
Varela, 1980, 1987; Beer, 1995). 

This new approach has been successfully applied to synthesize robots exhibiting a large 
variety of interesting behavior. Most of these behaviors, however, consist of forms of reactive 
behaviors (i.e. behaviors that can be produced by agents that do not integrate sensory-motor 
information over time but always react in the same way to the same sensory state) or 
behaviors in which internal mechanisms play a rather limited role (Keijzer, 2001; Nolfi and 
Marocco, 2001). The next goal is to develop agents able to solve more complex problems in 
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which agents cannot be guided toward the goal by the continuous update state of sensors and 
need some internal states as an addition to the missing sensory signals (Keijzer, 2001)1.  
Given that internal states should be extracted and/or continuously updated on the basis of the 
continuous flow of sensory-motor states, these forms of behaviour require an ability to 
integrate sensory-motor information over time (Beer 1995, 1996, Nolfi and Marocco, 2001). 
Indeed, to produce such behaviour organisms should possess two abilities: (1) an ability to 
extract useful internal states by integrating sensory-motor information over time and/or an 
ability to continuously update such states, and (2) an ability to act appropriately by taking 
into account both the current sensory-motor and internal states. 

In this paper we will show how the embodied cognitive science approach can be 
extended to successfully tackle problems that cannot be solved through simple reactive 
strategies but necessarily require an ability to integrate sensory-motor states over time. More 
precisely, we will show how autonomous robots synthesized through an evolutionary process 
(Nolfi and Floreano, 2000) can develop such complex skills in close interaction with the 
environment without human intervention. 

As we will see, successful results can be achieved by providing evolving individuals with 
neural controllers with neurons that (a) vary their activity at different rates to detect 
regularities at different time scales in the sensory-motor flow, and (b) use thresholded 
activation functions to detect events extending over time. In the next three sections we will 
describe the experimental setup, the obtained results, and the general implications of the 
experiments performed 

2 The experimental setup 

To investigate the issues described above in an experimental framework we decided to try to 
evolve a robot able to travel along a loopy corridor (see Figure 1, left) and to identify its 
current location in the environment2. 
 

                                                           
1 Form of behaviors more complex than simple reactive behavior or problems that require solutions more 

complex than reactive solutions have been called representation-hungry problems by Clark (1997) and 
anticipatory behavior by Keijzer (2001). I prefer behaviors that require an ability to integrate sensory-motor 
information over time, a terminology introduced by Beer (1995, 1996). This term stresses the fact that useful 
internal states are not given but should be extracted by the agent and/or continuously updated on the basis of 
the continuous flow of sensory-motor states. 

2 It should be noted that discriminating between problems that can be solved through purely reactive behavior 
and more complex problems that necessarily require more complex solutions is far from trivial if not 
impossible (see Nolfi, 1999, Nolfi and Marocco 2001). In this case, the main data that supports the 
assumption that this problem cannot be solved through a simple reactive strategy is the fact that simple 
reactive controllers produce rather poor performance while controllers also relying on internal states display 
close to optimal performance (see below). 
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Figure 1. Left: The environment consists of a loopy corridor of 40x70 cm. Lines represent walls, circles 
represent cylindrical objects, and arrows represent the starting positions and orientations in which the robot is 
placed at the beginning of each trial. Center: The environment is divided into 22 idealized regions placed along 
the corridor clockwise. Right:  The environment is also ideally divided into two rooms that are indicated in the 
Figure with light and dark gray colors. 
 
The robot used in the experiments described here is Khepera (Mondada et al., 1993) a 
miniature mobile robot with a diameter of 55 mm and a weight of 70 g (Figure 2). It is 
supported by two lateral wheels that can rotate in both directions and two rigid pivots in the 
front and in the back. By spinning the wheels in opposite directions at the same speed, the 
robot can rotate without lateral displacement. The sensory system employs eight infrared 
sensors that are able to detect obstacles up to about four cm. Experiments were conducted in 
simulation by using an extended version of Evorobot (Nolfi, 2000). To simulate the robot and 
the environment as accurately as possible, a sampling procedure was used to compute the 
activation state of the infrared sensors. Walls and cylindrical objects were sampled by placing 
one physical robot in front of them and by recording the state of the infrared sensors while 
the robot was turning 360 degrees at 20 different distances from of each object. These 
recorded values were used in simulation to set the activation states of the simulated infrared 
sensors on the basis of the current angle and distance of the robot with respect to obstacles. 
This procedure allows to develop a very accurate simulation that takes into account the 
detailed characteristics of the individual robot used in the experiments (Nolfi and Floreano, 
2000). 
 

 
 
Figure 2: The Khepera robot.  
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The controller of each individual consists of a neural network with nine sensory neurons 
directly connected to three motor neurons and five internal self-recurrent neurons receiving 
connections from the sensory neurons and sending connections to the motor neurons (see 
Figure 3). The first three sensory neurons encode the state of the three corresponding motor 
neurons at the previous time step, the other six sensory neurons encode the six frontal 
infrared sensors (normalized between [0.0, 1.0]). The first two motor neurons encode the 
desired speed of the two corresponding wheels and the last motor neuron encodes the robot's 
self-localization output (see below). 

 

sensory neurons

motor neurons

interneurons 

localization unit 

 
Figure 3: The architecture of the neural controller. The connections indicated with dashed lines (i.e. the 
connections between interneurons and the first two motor neurons that control the two wheels) are present only 
in some of the experiments (see text below). 
 
By running a set of control experiments in which individuals were provided with reactive 
controllers that did not included internal neurons, we observed  that evolved individuals were 
unable to solve the self-localization problem (result not shown). Indeed, the room in which 
the robot is located cannot be identified on the basis of the current sensory-motor information 
only, but can only be identified by taking into account the current and the previous sensory-
motor states experienced by the robot. In other words, self-localization in this experimental 
setting is an example of a problem that necessarily requires an ability to integrate sensory-
motor information over time. 

During the evolutionary process the architecture is kept fixed. Only the biases and the 
time constants of neurons (i.e. the parameters that determine the rate of change of the 
activation state of neurons, see next section) and the synaptic strengths of the connections are 
encoded in the genotype and allowed to change. All parameters are encoded in the genotype 
with eight bits. Connection weights and biases are then normalized in the range [-10.0, 10.0], 
time constants are normalized in the range [0.0, 1.0]. The initial population consists of 100 
randomly generated genotypes.  Each individual of the population is allowed to leave for 
eight epochs consisting of 2500 lifecycles each (each lifecycle lasts 100ms). At the beginning 
of each epoch the robot is initially placed in the eight corresponding positions and 
orientations indicated with the arrows in the left of Figure 1. Orientations are chosen to 
follow the clockwise direction of the corridor, however, a randomly selected angle in the 
range [-10, + 10] is in each trial added to the initial orientation of the robot. The 20 fittest 
individuals of each generation are allowed to reproduce by generating five copies of their 
genotype with 2% of their bits replaced with a new randomly selected value.  The process is 
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repeated for 500 generations. Each replication last about 1.5 hours on a standard 2GHZ PC 
and would take about three years on the real robot if testing one individual at a time. 

The fitness function has two components that reward, respectively, the ability to travel 
clockwise along the corridor and the ability to indicate the current position of the robot in the 
environment. The first component is calculated by virtually dividing the environment in 22 
adjacent regions (see Figure 1, center) and by computing the number of times a robot moves 
from one region to the next during its lifetime. The number of visited regions is truncated to 
1000 (i.e. visiting more that 1000 regions does not provide any additional advantage) and 
normalized in the range [0.0, 1.0]. The second component is calculated by virtually dividing 
the environment in two rooms, a dark and a light gray room, and by computing the 
percentage of times in which the robot correctly self-localizes in the two rooms (i.e. the 
fractions of lifecycles in which, while the robot is situated in the dark gray room, the 
activation of the robot's self-localization unit is lower than 0.5, and the fraction of lifecycles 
in which, while the robot is situated in the light gray room, the activation of the robot's self-
localization unit was higher than 0.5). The second component is computed only if the number 
of visited regions is equal or greater than 1000. If the number of visited regions is lower than 

1000, the total fitness is computed as follows: 
1000

C=Φ , where C is the number of visited 

regions while, if the number of visited regions is equal or greater than 1000, the total fitness 
is computed as follows: ( )DL*1+=Φ , where L and D are the percentage of times in which 
the robot correctly localizes itself in the light and in the dark gray rooms respectively. This 
implies that optimal performance correspond to fitness values that approximate 2.0 (this 
maximum value cannot be fully reached given that robots necessarily produce incorrect self-
localization answers during the very first part of each trial until they are able to self-localize). 
The rationale behind this fitness function is that evolving individuals should first acquire an 
ability to travel clockwise along the corridor and later acquire an ability to also self-localize 
in the environment. 

3 Results  

By running evolutionary experiments we observed that the ability to self-localize only 
emerges if internal neurons of evolving individuals are updated on the basis of activation 
functions that are suited to extract regularities at different time scales and to detect 
regularities that extend over a given amount of time. Figure 4 summarizes the results of two 
set of experiments in which: (a) internal and motor neurons are updated according to the 
logistic function (see equation 1), and (b) motor neurons are updated according to the logistic 
function but internal neurons are updated according to equation 2. 
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With Oj(t-1) being the output of the jth neuron at the previous time step, Aj being the 

activity of the jth neuron, τj the time constant of the jth neuron. 
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In all cases, the activity of sensory neurons correspond to the activation state of the 
corresponding infrared sensor (normalized in the range [0.0, 1.0]) or to the output of the 
corresponding motor neuron, and the activity of internal and motor neurons is computed 
according to the following function: 

 
 ∑+= iijjj OwtΑ  (3)
 

With tj being the bias of the jth neuron, Wij the weight from the ith to the jth neuron, Oi 
the output of the ith neuron that sends a connection to the jth neuron. All neurons are updated 
each 100 ms. 
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Figure 4. Fitness throughout generations of the best individual of each generation. Thin and thick lines represent 
performance achieved by individuals whose internal neurons are activated according to equation 1 and 2 
respectively. Left: Average result of 10 replications. Right: Result of the best replication for each experimental 
condition.  

 
As shown in Figure 4, during the first 20 generations the fitness of evolving individuals 

increases rather quickly and reaches value around 1.25 in both experimental conditions. At 
this stage evolving individuals maximize performance with respect to the first fitness 
component (the component that rewards the ability to travel fast along the corridor) but 
produce chance level performance with respect to the second fitness component (the 
components that rewards the ability to self-localize). During the successive evolutionary 
phase, the individuals of the second experimental condition (in which internal neurons are 
updated according to equation 2) clearly outperform the individuals of the first experimental 
condition (in which internal neurons are updated according to equation 1)3. At the end of the 

                                                           
3 In running another set of experiments (results not illustrated in details) in which internal neurons were updated 

according to a variation of equation 2 in which the output of the neuron was not reset when the activity was 
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evolutionary process in fact, the best individuals of the second experimental condition 
produce higher performance than the best individuals of the first experimental condition on 
the average (Figure 4, left). Moreover, while the best individuals of the second experimental 
conditions display close to optimal performance (i.e. correct self-localizations in at least 90% 
of the cases) in two out of ten replications, the individuals of the first experimental conditions 
always produce close to chance level performance with respect to the self-localization ability 
(Figure 4, right). 

To explain the difference in performance between the two sets of experiments we should 
consider that equation 2 allows neurons to easily detect events that extends over time. This 
can be easily demonstrated by analyzing the activation state of internal neurons in evolved 
individuals. As can be seen in Figure 5, the activation of the i3 internal neurons (that has a 
time constant of about 0.99 and therefore tends to change its activation state rather slowly) its 
reset to 0 when the left-side infrared sensor (s4) is almost fully off (when the robot crosses 
the corner indicated with the letter A). After this point, the activation state of this neuron 
keeps growing and reaches the maximum activation level after point B. This information (i.e. 
the time the robot has spent traveling along the corridor after crossing the corner A) allows 
the robot to easily determine the room in which it is currently located. In fact, the robot is 
always located in the light or in the dark gray room when the output of internal neuron s3 is 
below or above a given threshold respectively. The fact that this internal neuron is reset only 
when the robot crosses corner A is due to the fact that, given the particular way in which this 
robot travels along the corridor (i.e. the fact that the robot closely follows the left wall) and 
given the characteristics of this particular environment, the left-side infrared sensor (s4) is 
almost fully off only when the robot travel along this particular location of the environment. 

In principle, the same information computed by a single neuron updated according to 
equation 2 could be computed by a simple neural circuitry involving few neurons updated 
according to equation 1 and few connections with appropriate connection strengths. The 
difference in performance between the two set of experiments, however, suggests that the 
adoption of equation 2 significantly increases the evolvability of these systems (i.e. the 
probability that the application of the genetic operators, by modifying the free parameters of 
the individuals, can produce progressively better solutions).  

 
                                                                                                                                                                                     

lower than 0 we did not observe the emergence of individuals able to solve the self-localization problem. 

Performance was very similar to that shown in Figure 4, thin line. 
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Figure 5. Neural outputs of a successful evolved robot traveling in the environment. Left: The environment and 
the robot trajectory during a few laps of the corridor. A and B indicate the approximate positions of the robot 
when the output of the third internal unit is reset and when it reaches the maximum value, respectively. Right: 
The output value of motor (m1-m3), internal (i1-i5), and sensory (s1-s9) neurons while the robot is traveling 
along the corridor (the output value is represented by the height with respect to the baseline).  
 
3.1 Extracting regularities over time at different levels of organization 
 
 Another interesting aspect to investigate is whether providing also the sensory neurons with 
a time constant parameter that determine their rate of change could be advantageous. To 
investigate this issue, we ran a new set of experiments in which internal and motor neurons 
are activated according to equation 1 and 2 respectively (as in the previous experiment 
described above) but sensory neurons are activated according to the following equation: 
 
 ( ) jj

t
jjj SOO ττ −+= − 1)1(

 (4)
 

With Oj being the output of the jth neuron, Oj(t-1) the output of the same neuron at the 
previous time step, τj the time constant of the jth neuron, Sj being the state of the 
corresponding sensor (normalized in the range [0.0, 1.0]) or the state of the corresponding 
motor neuron at the previous time step (in the case of the three sensory neurons that encode 
the state of the three motor neurons at the previous time step). Notice that, as in the case of 
the internal neurons updated according to equation 2,  the time constant parameter determines 
how much the activation state of the neuron is influenced by its previous activation state or, 
in other words, how slowly the neuron tends to change its activation state over time. Contrary 
to the internal neurons updated according to equation 2,  these sensory neurons are never 
reset to 0.  
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Figure 6. The thick line represents the same data shown in Figure 4, left. The thin line represents the results of a 
new experiment in which sensory neurons are updated according to equation 4. Average results of ten 
replications for each experimental condition.  
 

As shown in Figure 6, neural controllers in which sensory neurons are activated 
according to equation 4 (thin lines) slightly outperform neural controllers in which sensory 
neurons encode the current state of the infrared or motor neurons (thick lines), on the 
average. Close to optimal performance (i.e. correct self-localizations in at least 90% of the 
cases) was observed in two out of ten replications in both experimental conditions.  

Interestingly, sensory neurons updated according to equation 4 are able to detect 
regularities occurring at short time scales, and internal neurons, capitalizing on that, are used 
to detect higher level regularities occurring at longer time scales. As shown in Figure 7, 
displaying the behavior and the neural activity of one of the most successful individuals, the 
internal neuron i1 is turned off when the robot negotiates corners (see the locations indicated 
with the letter A on the left side of the Figure) and increases its output while the robot travels 
along a straight corridor. Thanks to a recurrent positive connection, however, the neuron is 
turned off on corners only if its activation level is below a given threshold or when the robot 
negotiates the narrow passage indicated with the letter C. The final result is that this neuron is 
always below a given threshold in the light gray room due to the reset of its activity occurring 
in C and in A corners and is always over that threshold in the dark gray room.  

As in the case of the previous strategy described in Figure 5, internal neurons are used to 
capture sensory-motor regularities that extend over rather long time scales (ranging from few 
to several seconds). In this experiments however, the high scale regularities extracted by 
internal neurons are based on short scale regularities, such as corners or narrow passages, 
ranging from few to several hundreds of milliseconds that are extracted by sensory neurons. 
Indeed, the internal neuron i1 has a time constant of 0.98 (i.e. it tends to change its activation 
state very slowly) while sensory neurons have time constants that range from 0.04 to 0.44 
(i.e. they tend to change their activation state much more quickly). This allows evolving 
individuals to solve the self-localization problem even when no single sensory state uniquely 
identifies a given location of the environment and the whole problem can only be solved by 
extracting regularities at different time scales. 

 
Figure 7. Neural outputs of a successful evolved robot traveling in the environment. Left: The environment and 
the robot trajectory during a few laps of the corridor. A and C indicate the approximate positions of the robot 
when the output of the first internal unit is reset to 0. B indicates the position of the robot when the first internal 
unit reaches its maximum activation level. Right: The output value of motor (m1-m3), internal (i1-i5), and 
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sensory (s1-s9) neurons while the robot is traveling along the corridor (the output value is represented by the 
height with respect to the baseline). 
 
3.2 Interference between the development of different abilities 
 
Finally, we investigated whether the development of the ability to self-localize does interfere 
with the previous acquired ability to travel along the corridor (remember that evolving 
individuals are rewarded for the ability to self-localize only if they are also able to effectively 
travel along the loopy corridor). To verify if this interference really occurs we ran a new set 
of experiments in which the connections from the internal neurons to the first two motor 
neurons controlling the two wheels (shown with dashed lines in Figure 3) were absent. The 
elimination of such connections results in neural controllers organized into two independent 
neural modules: a first neural module (constituted by the connection weights between the 
sensory neurons and the first two motor neurons controlling the two wheels) that controls the 
motion of the robot in the environment, and a second neural module (constituted by the 
connection between the sensory neurons, the internal neurons, and the last output units 
encoding the self-localization output) that is responsible for  the ability to self-localize. As in 
the case of the experiment described above, sensory, internal and motor neurons were 
updated according to equation 4, 2 and 1 respectively. 
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Figure 8. Thin and thick lines represent the fitness throughout generations obtained by providing or not 
providing the neural controllers with the connection from the internal neurons to the first two motor neurons 
controlling the two wheels respectively. Results corresponding to the thin line are the same results shown in 
Figure 6. Average results of 10 replications for each experimental condition. 

 
As shown in Figure 8, when removing the connection between internal neurons and the 

first two motor neurons controlling the two wheels, significant better performance was 
achieved on average. Close to optimal performance was achieved in nine out of ten 
replications while in the experiments described above they were achieved only in two out of 
ten replications. This can be explained by considering that mutations affecting internal 
neurons in individuals provided with full connectivity between internal and motor neurons, 
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by potentially affecting the way in which the robot travels in the environment and not only 
the self-localization output, have a much higher probability of being counter-adaptive.  
Indeed, changes affecting the internal neurons either might cause the loss of the ability to 
travel fast along the corridor or, by modifying the way in which the robot moves in the 
environment, might make it impossible to extract sensory-motor regularities over time that 
were used by individuals of previous generations to solve, at least in part, the self-localization 
problem. 

 
3.3 Spiking and dynamical neural networks 

 
Before concluding this section we will discuss the relation between the activation functions 
described above and the other related models discussed in the literature. Biological neurons 
communicate by sending pulses (spikes) along the axons to other neurons that alter the 
electric voltage of the membrane of the postsynaptic neurons. A neuron produces a spike 
when the electric potential of its membrane exceeds a given threshold and then needs some 
time to re-establish its electrochemical equilibrium before being able to generate a new spike. 
In the majority of the cases, computational models of neural networks assume that what 
matters in the communication among neurons is the firing rate and that this quantity can be 
conveniently represented by the activation level of the neuron as in equation 1. 
Unfortunately, this form of simplification, does not only neglects the possible importance of 
the precise time of emission of a single spike (Villa, 2000), but also neglect the fact that real 
neurons are dynamical systems, i.e. their activation state is partially influenced by their 
previous activation state. To overcome the latter simplification one should rely on slightly 
more complex models such us spiking neural networks in which the single spikes are 
modeled (Rieke et al., 1997; Floreano and Mattiussi, 2001) or dynamical neural networks in 
which, as in equation 2 and 4, a time constant parameter is associated to the passive property 
of neurons (Hopfield, 1984; Beer and Gallagher 1992).  

The specific activation functions described in this paper have not been directly inspired 
by biological evidences. Interestingly, however, internal neurons updated according to 
equation 2 and 4 resemble the slowly discharging spiny neurons of the striatum that produce 
outputs that last between 100ms and several seconds (Schultz et al., 1995). Interestingly, "In 
most cases, the activity of striatal neurons is not sufficiently explained by the physical 
characteristics of the stimuli presented or the movements performed but depends on certain 
behavioral situations, certain conditions, or particular kinds of trials in a given task, thus 
showing the relationships to the context in which the particular events occurred" (Schultz et 
al., 1995, p.12). 

4 Discussion  

Dealing with the real world or realistic simulations necessarily implies to deal with events 
that extend over a wide range of time scales. Regularities of this sort can only be detected by 
considering amount of changes in amount of time (Van Gelder and Port, 1995) and by 
choosing the appropriate time scale. As reported by Keijzer (2001), the picture-book Powers 
of Ten of Philip and Phylis Morrison is a clear example of the relation between the scale 
chosen and the regularities that can be detected (in the context of space instead of time). The 
book is a visual journey consisting of 42 images, ranging from the entire known universe to 
three quarks with a proton, where each image portrays a part of the previous one magnified 
by a power of ten. Galaxies, planets, lakes, DNA, atoms can obviously only be detected at the 
appropriate space scales. Similarly, in the experiments described in the previous sections 
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different type of regularities (e.g. corners and long corridors) extend over different time 
scales (ranging from a few hundreds of milliseconds to several seconds) and can only be 
detected by neural processes integrating information at different time scales.  

The results described in this paper demonstrate that robots provided with control systems 
that are suited to deal with amount of changes in amount of time can solve hard problems that 
require to integrate sensory-motor information over time at different time scales. Indeed, the 
self-localization problem described in the previous sections could only be solved by using 
artificial neurons in which: (1) the output changes at different rate according to genetically 
encoded parameters, and (2) the output is reset when the net input goes below a genetically 
encoded threshold (corresponding to the bias of the neuron). The former aspect seems to be 
crucial for detecting regularities occurring at different time scales. The analysis of the 
evolved individuals indeed showed that regularities occurring at short time scales (such us 
sensory-motor states experienced while the robot was negotiating a corner) were detected by 
neurons with fast changing rates while regularities occurring at longer time scales (such as 
sensory-motor states experienced while the robot was traveling along a long corridor) were 
detected by neurons with slow changing rates. The latter aspect seems to be crucial to detect 
events that last a given amount of time. In agents that are situated in a realistic environment, 
sensory and internal neurons provide information that extends over time and that does not 
have any meaning when isolated from time duration. From this point of view one might 
observe that reactive systems are a limit case in which regularities necessary to achieve the 
goal of the agent are visible at a single time scale which, at least roughly, corresponds to the 
time scale used to update the neurons of the agent. Finally, it should be noted that the same 
arguments that apply to the detection of regularities also apply to the effects that a neuron 
should have on other neurons or on actuators, i.e. the two characteristics described above 
might be crucial to produce effects occurring at different time scales and/or effects lasting a 
given amount of time. Overall, the obtained results show the importance of viewing cognition 
as the results of processes that unfolds in time at different time scales (van Gelder and Port, 
1995). 

Finally, the experiments presented in this paper demonstrate that the embodied cognitive 
science approach can tackle complex problems that necessarily require internal mechanisms. 
In his seminal work, Randall Beer showed how certain problems such us walking require 
agents provided with an internal dynamics (Beer, 1995). Moreover, it showed that evolved 
legged animats, controlled by continuous time recurrent neural networks, not only display an 
ability to produce an effective walking behavior on the basis of their internal dynamics but 
also display an ability to modulate their walking behavior on the basis of the sensory-motor 
flow, i.e. evolved networks displayed an ability to speed up or slow down the walking 
behavior when the rate of change of the sensors was artificially increased or decreased. This 
walking problem is a case in which changes in sensory states do not provide enough 
information to produce the appropriate motor actions and also an example of behavior that 
requires changes in motor actions that occur at a different (slower) time scale than changes 
occurring in sensory inputs (for other examples, see Ziemke 2000; Tuci, Harvey, and Quinn, 
2002).  In this paper we showed how a similar approach can be used to solve problems, such 
us self-localization, which do not only require to produce changes in motor states occurring at 
a different time scale from changes occurring in sensory states but that also require to deal 
with different time scales. Indeed, self-localizing robots are able to work at a rather fast time 
scale (in the order of 100 ms) to detect obstacles and avoid them, at a slightly lower time 
scale (in the order or few hundreds of milliseconds) to detect regularities such us corners or 
narrow corridors, and at a even slower time scales (in the order of seconds) to detect high 
order regularities such as rooms and produce self-localization outputs. As in the case of the 
walking legged robots described above, the wheeled robots presented in this paper do not 
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only have an internal dynamic but also have an ability to integrate their internal states with 
the sensory-motor flow in order to, for example, self-localize after being placed in a random 
selected position of the environment. 
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