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Abstract. Ecological networks are networks that learn in an environment. It is the
environment, and not the researcher, that determines the conditions in which learning takes
place such as which input patterns are seen, what the teaching input is, etc. Furthermore,
input patterns at time N + 1 are often a function of the output of the network at time N. Two
hypotheses are explored with reference to ecological networks. One is that predicting the
sensory consequences (input) for an organism of the organism’s actions {output) on the
environment is one of the basic tasks of this type of network —basic for constructing an
environmental map or world model. The other is that learning to predict the sensory
consequences of the organism’s actions favourably predisposes the organism to learn to
attain goals with those actions. Some data from simulations that support these two
hypotheses are reported.

1. Ecological networks

Artificial neural network models aspire at biological plausibility. Hence, they are open to
criticism when one can demonstrate that a particular feature of such models is
biologically implausible. One type of biological implausibility concerns whether the
‘brain-like’ style of computing (Rumelhart 1989) that characterises neural networks is an
appropriate model of how real brains compute mental functions. For example, doubts as
to the neurophysiological plausibility of current neural network models have been raised
with regard to the back-propagation of error antidromically on the same connections
that propagate activation and inhibition (Crick 1988, but see Stork 1989) or the
assumption of a simple algebraic sum of activations and inhibitions to calculate the net
input to a unit (see the review by Segal (1988) of the book by McClelland and Rumelhart
(1988)).

Another kind of biological implausibility of artificial neural network models concerns
their behavioural appropriateness. Current neural models tend to be behaviourally
implausible if one considers the conditions in which learning takes place. Many
experiments and theorising on neural nets seem to assume that learning takes place in a
vacuum. It is the experimenter who arbitrarily decides which input patterns will be seen
by a network, in which order, with which frequency, what the teaching input is for
computing error, which patterns are learning patterns and which are used to test the
generalisation power of the network, etc. Moreover, the output of the network does not
have any influence 'on which input pattern the network sees in the next cycle. This
approach may be indicated for artificially manipulating experimental conditions and for
conducting parametric studies but it runs the risk of missing critical aspects of the
learning and behaviour of organisms.

0954-898X/90/020149 + 20803.50 © 1990 IOP Publishing Ltd 149




150 D Parisi, F Cecconi and S Nolfi

In the biological world, by contrast, organisms live and learn in an environment. The
environment has a structure that determines, in interaction with the behaviour of the
organism, the conditions in which the organism’s learning takes place. Most learning can
be interpreted as the progressive construction, in an organism’s nervous system, of a
internal model of the environment in which the organism lives. This model is used by the
organism to pursue its goals in the environment in an efficient way. If there is no
environment, learning cannot but be arbitrary and will not exhibit many of the features
of biological learning.

Ecological networks, or econets, are networks that learn in an environment. The
experimenter defines the structure of the environment and from that point on it is the
environment itself, and the behaviour of the organism in it, that determine the conditions
in which learning takes place, i.e. which input patterns (sensory information) arrive at the
network, in which order, with which frequency, what the teaching input is, etc.
Furthermore, ecological networks pursue goals in the environment in which they live,
which implies that they act on the environment producing changes in the environment
itself or in the relationships between the organism and environment. Hence, the kind of
sensory information inpinging on the network as input patterns is normally a function of
both the structure of the environment and the output of the network in the preceding
cycle(s).

A fundamental difference between non-ecological and ecological networks is that
non-ecological networks discover regularities in the input as such whereas ecological
networks discover regularities also in the effects that the network’s actions have on the
environment as these effects are revealed by subsequent input. As Jordan (1989, p 62) has
observed, what is emphasised in most current research is ‘the role of environment as a
source of stimuli, rather than as a recipient of actions’. But one should add that what is
especially neglected is the role of the environment in mediating between the organism’s
actions and the subsequent stimulation to the organism. Even in research that
emphasises the role of the environment as recipient of actions, such as Williams (1988),
this only means that the environment has the role of correcting the network’s output
(actions) using some supervised learning method. As a matter of fact, the types of tasks
that have been traditionally studied with neural systems tend not to be ‘ecological’.
Consider pattern classification; a network must learn to classify together different input
patterns by providing the same response to all patterns belonging to the same class and a
different response to the patterns belonging to another class. One typical way of doing
this is through supervised learning in which the network is explicitly taught the response
appropriate to each class of patterns. However, in real environments it is not clear where
this explicit teaching input may come from. Organisms are not usually told what is the
response appropriate for a particular class of stimuli but they have to find out by
themselves. An ecological approach to pattern recognition would try to generate pattern
recognition indirectly by having the network discover which input patterns require the
same or similar actions (outputs) on the part of the network if the organism must attain
some goal with those actions, and which patterns require a different type of actions. (For
an ecological network approach to pattern recognition see Floreano et al 1989.)

The basic architecture of an ecological network includes some input units for
encoding sensory information from the environment to the organism and some output
units for encoding the organism’s actions on the environment. The network’s actions
cause changes in the environment or in the relationships between the organism and the
environment. These changes, in their turn, determine in part or completely the sensory
information which arrives at the network in the successive cycle. The form of such a
network is the following:
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environment

Schema (1)

sensory information

The environment is simulated by an algorithm which incorporates the environment’s
structure and, on the basis of this structure and the network’s output (the organism’s
actions), computes the next input to the network (sensory information to the organism).

(Note that in schema (1) the role of sensory information with respect to action is not
necessarily that of cause to effect as in a stimulus—response situation, but it can be that of
helping the organism to select the appropriate action which has another, perhaps
internal, cause.)

Two simple situations can help illustrate (1). In both examples the organism lives ina
bi-dimensional world and it has a facing direction. (For research using similar situations,
see Patarnello and Carnevali (1988) and Booker (1988).) In the first example (see figure 1)
the organism can make one of four possible actions: it can move forward a fixed limited
amount in the facing direction, it can turn right or left 90°, or it can do nothing. These
four actions are coded in the output units. The environment contains a single static
object (say, a piece of food) and at each cycle the network receives sensory information
from this object specifying the object’s position relative to the organism. This in-
formation, which is coded in the input units, specifies (a) the distance of the object from
the organism, and (b) the angle of the object with reference to the facing direction of the
organism.

Since the organism turns and moves, the sensory information from the food object
changes. The input patterns which are presented to the network at each cycle are not
established arbitrarily and a priori by the experimenter but are determined by the output
of the network in the preceding cycle—and by the structure of the environment, e.g.
where the food is located within it.

Our second example concerns an organism which does not move or turn but has a

facing
direction
[ A = organism
Rl ® = food
i d a = angle
4 = distance

Figure 1. Example 1. The organism may move forwards, left or right, or may remain
stationary.
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Figure 2. Example 2. The organism cannot move but has a two-segment arm that can be
moved.

two-segment arm that can be moved (see figure 2). The movements of the arm are
specified by the two angles that the first and the second segment of the arm make with
some fixed reference line. These two angles, which together specify a new position of the
arm given a preceding position, are coded in the network’s output units. The sensory
information (input patterns) concerns the position of the endpoint of the farther segment
of the arm, let us say, of the arm’s hand. As in the preceding case, the network is informed
at each cycle about the distance of the hand from the organism and about the hand’s
angle with reference to the organism’s facing direction.

In this case too the input to the network at cycle N depends on the network’s output
in the preceding cycle N — 1. Since the organism moves its arm, this movement changes
the arm’s endpoint (the hand). The difference with respect to the first example is that in
the present case the object (the hand) moves and the organism does not, whereas the
opposite was true in the preceding example. However, since it is the organism that causes
the movement of the hand by moving its arm, in both cases the organism’s actions have
SensOry consequences.

It is interesting to consider how ecological networks relate to time. Time appears to
be much more important for ecological networks than for ordinary, non-ecological ones.
In ordinary networks without recurrent connections the relationship of an activation
cycle to the following cycle is an extrinsic one. Each cycle is independent of the preceding
or following one. In these networks, not only is it the experimenter who arbitrarily
decides what the successive input to the network will be and therefore indirectly
determines what the network will do in the next cycle, but the sequence of outputs of the
network (that is, the outputs of successive activation cycles) is not a temporal sequence
having a meaning as a sequence but merely a plurality of outputs.

On the other hand, one might say that the temporal dimension is intrinsic to the
functioning of ecological networks. From the input point of view it is clear why
ecological networks are temporal networks since each member of a sequence of inputs is
determined either by the intrinsic temporal structure of the environment or by the output
of the network (action on the environment) in the preceding cycle, or by both. But even
more important for understanding the intrinsically temporal nature of ecological
networks is their output side. Ecological networks have at least a portion of their output
units that must necessarily be interpreted as ‘actions of the organism on the environment’
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and therefore have a causal effect on the environment, producing changes in it or in its
relationship with the organism. Now, a sequence of actions of an ecological network has
an intrinsic temporal meaning in that the behaviour of the network is likely to be
evaluated not in terms of single actions but in terms of entire sequences of actions. We
will call a sequence of actions of an ecological network a ‘trajectory’. Typically, the final
action of a trajectory is the one that attains some goal, e.g. that which determines a
quantitative change in the parameter in terms of which the fitness or adaptiveness of a
network is being evaluated. For example, if the fitness is ‘number of food elements eaten’,
an action which directly causes the eating of a food element can be the final action of a
trajectory which has included ‘approaching’ actions in addition to the final ‘eating’
action. (The final action of a trajectory used to be called the ‘consummatory act’ in
animal psychology.)

The environment in which an ecological network lives can contain natural objects,
other organisms (e.g. conspecifics), instruments and artefacts. Furthermore, the notion of
environment that is needed for ecological networks must be sufficiently general and
abstract to include the organism’s body as part of the organism’s environment.
According to this abstract notion, the environment of an organism is whatever
systematically mediates the relationship between the organism’s actions and the sensory
consequences (input patterns) of these actions for the organism itself. An object is part of
an organism’s environment if an action of the organism changes the sensory information
coming from that object to the organism. It is clear, from this definition, that the
organism’s body is part of the organism’s environment. If the organism moves one part of
its body this may result in proprioceptive or visual information from that body part to
the organism. Another kind of effect is tactile information when the body’s moving part
touches an external object. This effect is doubled if the touched object is another part of
the organism’s own body. Then, tactile sensory consequences from the organism’s
actions result from both the touching (and moving) part and from the touched part.

Another reason for including the body of an organism as part of the organism’s
environment is that as the external environment may change and the organism must
adapt to these changes, so the organism’s body can change, as in the course of growth,
and the organism must adapt to these changes in its body. For example, if a network has
learned to guide an arm to reach objects, a subsequent increase in the length of the arm
will require some new adaptation on the part of the network.

It is important to keep in mind that an organism’s body is part of the organism’s
environment since it might be that one of the first tasks for a developing organism is to
construct an internal model of that very special part of the environment which is its own
body. The second of the two organisms that we have described above, the one which
moves its arm, receives sensory input from an object which is a part of the organism’s
own body, i.e. from its hand.

2. Learning to predict the sensory consequences of one’s own actions

One fundamental task for ecological networks is to learn to predict the sensory
consequences of the organism’s own actions. The action output of an ecological network
causes changes in the environment (e.g. by displacing or modifying objects) or in the
relationship between the organism and the environment (e.g. when the organism turns or
displaces itself). In both cases the actions of the organism have sensory consequences, in
the sense that the sensory input from the environment in the next cycle is partially or
completely determined by the particular action executed by the organism in the
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preceding cycle. A prediction task, in the sense intended here, is learning to predict what
these sensory consequences are, that is, to specify the nature of these consequences before
a planned action has been executed. This kind of prediction task must be neatly
distinguished from the task of predicting the environmental event that will follow a
current event (see e.g. Elman 1988, Sutton and Pinette 1985). This second type of
prediction task, which may be involved in classical conditioning (see Sutton and Barto
1981), in event expectation, and in the learning of sequences of events, can be very
important in itself and can be intertwined in interesting ways with predicting the
consequences of one’s own actions. However, what we are concerned with here is this
latter type of prediction only.

To construct a predicting network we will have to slightly complicate the basic
design of an ecological network as described above. This basic design involved a set of
input units coding sensory information from the environment and a set of output units
coding actions of the organism. The environment is simulated by an algorithm that, on
the basis of the environment’s structure and the network’s output at cycle N, determines
the network’s input at cycle N + 1.

A predicting network in a sense inverts the respective roles of sensory information
and of actions. The input of a predicting network becomes the specification of an action
that the organism is planning to do and the network’s output is a prediction of what the
sensory consequences of this action will be, i.e. what the next sensory input will be when
the planned action will have been executed. Such a prediction task can be taught using
back-propagation without violating the principles of ecological networks. In many uses
of back-propagation it is assumed, rather implausibly, that a ‘tutor’ is continuously
available to provide a teaching input to the learning organism. In a predicting network 1t
is the environment itself which acts as such a tutor. For each input (planned action of the
organism) the algorithm which simulates the environment computes the actual sensory
consequences for the organism and these are used as teaching input to be compared with
the predicted sensory consequences (output of the network).

The schema of this basic predicting network is the following:

prediction of
sepsory consequences

Schema (2)

ff(;)

action

Schema (2) refers to a situation in which a given action has sensory consequences that
are independent of the current sensory information. One example of this situation might
be an infant in its first year of life learning to predict the kind of sounds which are
produced by its various phono-articulatory actions. What sound results from a phono-
articulatory action is largely independent of the sensory situation prevailing when the
action is executed. However, in most other cases the sensory consequences of an action
depend both on the specific action and the current sensory data. This is true, for example,
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for the two situations that we have described above. If a network must predict the new
distance and the new angle of the object as the organism turns or moves in space, it is
necessary for the network to know both what the specific action planned by the organism
is and the current distance and angle of the object. In the same way, if we want a network
to learn to predict the new position of the arm’s endpoint (hand) as the organism moves
its arm, we will have to supply the network with information both on the planned arm
movement and on the current position of the hand.

The schema for these more complex but more realistic predicting networks is the
following:

prediction of
sensory consequences

Schema (3)

action current
sensory information

It is important to ask where the two inputs to this network may come from. The
teaching of a prediction task can be realised in two different ways, one more ecological
than the other. The less ecological procedure assumes that it is the experimenter who tells
the network each time which action to do. The experimenter prepares an a priori file of
(e.g. randomly selected) actions and asks the network to learn to predict the sensory
consequences of each of these actions (see e.g. Jordon 1989). Similarly, but independ-
ently, the current sensory information accompanying each input action can be arbitrarily
specified by the experimenter. In other words, in this non-ecological approach it is the
experimenter who decides each time the action whose sensory consequences must be
predicted by the network and the sensory situation in which such an action is executed.

The alternative, more ecological, approach excludes the experimenter and assumes
that it is the network itself that decides which action to take next. Similarly, it is the
environment and the network’s previous action which specify the sensory circumstances
in which the action is executed. As we saw, it is a defining characteristic of ecological
networks that they generate actions as output. What we want is that the same network
that generates actions as output has a second kind of output, i.e. a prediction of the
sensory consequences of the actions that the network itself generates. The action which is
decided at cycle N (output) becomes the currently planned action (input) at cycle N + 1.
As for the other input to network (3), i.e. the current sensory information, it is the
environment itself which is the source for this information. In fact, the same angle and
distance of the object (or hand) which is computed by the algorithm as the actual
position of the object (or hand) after the organism’s action is executed, and which is used
as teaching input for correcting the prediction error, becomes the next current sensory
information.
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Hence, the more complete network that we propose to study has the following
architecture:

prediction of
next action sensory consequences

Schema (4)

current action current
sensory information

We assume that a network like (4) is the ‘nervous system’ of simple organisms like
those that we have described above. In the next two subsections we report some results of
simulations on teaching this type of network to predict the sensory changes resulting
from the organisms’ actions.

2.1. Predicting how the sensory information from an object changes as the organism
displaces itself in space

The organism lives in a bidimensional environment which is a grid of 10 x 10 cells. The
environment contains the organism and a single object, both occupying one cell. The
organism has a facing direction and a repertoire of only four possible actions: it can
move one cell in its facing direction, it can turn 90° left or right, or it can stay still. The
sensory information from the object is (a) the Euclidean distance of the object from the
organism, and (b) the angle of the object with the organism’s facing direction.

The network which simulates the organism’s nervous system is a feed-forward
network with a single layer of hidden units. There are four input units, four output units,
and seven hidden units. Two input units code the currently planned action. The coding is
binary: 11 is ‘move forward’, 10 is ‘turn 90° left’, 01 is “turn 90° right’, 00 is ‘stay still’. The
other two input units code the current distance and angle of the object, respectively. The
coding in this case is continuous, with angle and distance normalised to values between 0
and 1. Of the four output units, two code the next action and two code a prediction of the
new angle and distance resulting from executing the currently planned action. The
coding is identical to that of the corresponding input units.

There is no teaching for the action output units. The ability to predict how the
object’s position relative to the organism changes with the organism’s displacements is
taught using the backpropagation algorithm (Rumelhart et al 1986). The activation level
of the prediction output units as computed by the network is compared with the correct
activation level which is computed by the environment-simulating algorithm, and the
resulting error is used to modify the weights of the connections from the hidden units to
the prediction output units and from the input units to the hidden units. Notice, however,
that the weights from the hidden units to the action output units are never modified but
they remain always the same weights that were initially assigned in a random way to the
network.

We ran three different networks with the same architecture but a different initial
assignment of weights. Each network was taught 15000 cycles of back-propagation, i.e.
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Figure 3. Prediction error curves for (A) self-generated movements and (B) externally
imposed movements for {a) body rotations and displacements, and (b) arm movements.

1000 actions x 3 epochs x 5 worlds, each epoch being defined by a new starting position
of the organism and each world by a new position of the food element. The learning rate
was 0.2 and momentum was 0.9,

To compare prediction learning based on actions generated by the experimenter with
the same learning based on actions generated by the network itself, we ran two different
kinds of simulations. In one simulation the output of the action units was completely
ignored. We prepared a file of randomly selected actions and the network learned to
predict the sensory consequences of these actions (externally generated actions). In the
other simulation the output of the action units in cycle N became the currently planned
action (input) in cycle N + 1 (internally generated actions). In other words, in this second
simulation the network learned to predict the sensory changes resulting from actions
that it itself had generated. In both simulations, the actual sensory consequences as
computed by the environmental algorithm were the next sensory input.

The results are displayed in figure 3(a) which shows the prediction error averaged for
the three networks in each of the two conditions. The networks learn to predict in both
simulations but the prediction error decreases more quickly when the network is learning
to predict on the basis of internally generated actions than with externally generated
actions.
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2.2. Predicting how the sensory information from the organism’s own hand changes as
the organism moves its arm

This organism does not move but it has a two-segment arm that can be moved. As the
arm moves, the endpoint of the farther segment, i.e. the arm’s hand, also moves and the
organism must learn to predict where the hand will end up when a currently planned
movement of the arm is executed.

The environment of this organism is a bidimensional semicircular world with the
organism sitting at the centre of the circle. The organism has a fixed ‘visual field’ of 180°
and since the radius of the circle is equal to the length of the organism’s arm when the
arm is completely stretched, the hand has access to all points within the semicircular
world.

The architecture of the network is identical to that of the preceding simulations. The
movements of the arm are defined by the two angles that must be added to or subtracted
from the current angles of each of the arm’s two segments to generate a new arm
configuration. Two input units code the two angles that define the currently planned arm
configuration. The arm movements are somewhat restricted in that each angle cannot
exceed 30°. Within this restriction each angle is normalised to an activation value
between 0 and 1. The position of the hand is expressed as its Euclidean distance from the
organism’s body and its angle with respect to the organism’s fixed facing direction
(North). Two other input units code the current angle and distance of the hand in the
same manner as the object’s angle and distance in the preceding simulations. Two output
units code the next movement of the arm and two additional output units the predicted
position of the hand.

There were 15000 cycles of back-propagation subdivided in five epochs, each epoch
being defined by a new starting position of the hand. As in the preceding simulations, the
learning rate was 0.2 and momentum 0.9.

Two sets of simulations were run, one set with internally generated actions and the
other with externally generated actions. The prediction error for the two sets of
simulations (average of three networks in each condition) as a function of learning cycle
is shown in figure 3(b). As in the preceding case, predicting the sensory consequences of
one’s actions is easier if such learning is based on actions that the network itself has
generated.

As this point one should ask why prediction learning based on internally generated
actions is constantly better than the same learning based on externally generated actions.
Consider the architecture of our network (4). The connection weights which are
responsible for generating a prediction are (a) the weights from the input to the hidden
units, and (b) the weights from the hidden units to the prediction output units. On the
other hand, the weights that generate the next action are (a) the weights from the input to
the hidden units, and (b) the weights from the hidden units to the action output units.
Hence, the two type of tasks, prediction and action, share a common set of connection
weights, i.e. the (a) weights from the input to the hidden units, although they are also
based on distinct weights, the (b) weights. Now it appears that if predictions are learned
on the basis of actions generated by (at least some of) the same connection weights that
also generate predictions, they become easier to learn.

An interesting consequence of this architecture is that the actions generated by a
network will tend to change in the course of prediction learning. It is true that there is no
teaching on the action output units and therefore the connection weights from the hidden
units and these output units do not change. However, as we have indicated, an action is
generated by these networks based both on these fixed weights and on the weights of the
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Figure 4. Trajectories of 50 successive body rotations or displacements for three naive (N)
and three predicting (P) networks. The starting position is indicated by the rectangle and the
food location by the circle. (Note that N2 is generated by an organism that always selects ‘go
forward’ and N3 by an organism that always selects ‘turn 90° right’}

connections from the input units and the hidden units-—and these weights do change as
a consequence of prediction learning. As a matter of fact, we have observed some changes
in the trajectories generated by our networks during prediction learning. These changes
emerge if one compares a sequence of actions as these actions are generated by a network
prior to prediction learning with a sequence of actions which are generated by the same
network after it has learned to predict. Notice that these changes are a spontaneous
by-product of prediction learning since no one is teaching the network to act in any
particular way. Figure 4 shows a trajectory of 50 actions generated by each of the three
networks of the first experiment prior to prediction learning and a trajectory of 50
actions generated by the same networks after prediction learning with internally
generated actions. The first set of trajectories are based on the random weights initially
assigned to the networks and the second set of trajectories are a result of the weights as
some of them (those from the input to the hidden units) have been modified due to
prediction learning. While prior to prediction learning the organisms’ movements are
quite stereotypic (e.g. ‘turn right' or ‘go forward’ all the time), they become more
differentiated after prediction learning, with the organisms exploring a larger portion of
the surrounding space.

Changes also emerge in the kinds of arm movements that are generated by the
networks in the second experiment before and after prediction learning. To compare the
motor behaviour of these organisms before and after prediction learning we have
examined the amplitude of their arm movements as measured by the two angles that
define each arm movement. Figure 5 shows the amplitude of the two angles summed
together (with identical sign) and normalised to values between 0 to 1 for 50 successive
arm movements generated by one of the three networks before and after prediction
learning. Prior to prediction learning the arm movements appear to be more sweeping
and jerky so that the hand ends up in widely separated regions of the space. After
learning the arm movements are less sweeping and more finely adjusted with periodical
explorations of more distant portions of the space. The less sweeping arm movements are
also typical of the other networks after they have learned to predict.

Given these changes in the actions that are generated as a network learns to predict
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Figure 5, Trajectories of 50 successive arm movements for (a) one naive and (b) one predicting
network. The trajectories are represented by the normalised sum of the amplitudes of the two
angles defining each movement.

their sensory effects, one might advance the hypothesis that prediction learning is easier
for internally than for externally generated actions because internally generated actions
are progressively changed in a manner that tends to facilitate prediction learning. One
might even think that if a network has to learn to predict the effects of some actions and it
is free to decide which actions these are, it would progressively move toward very
simplified trajectories. For example, a network that governs the displacements of an
organism in the first experiment should tend to choose always the ‘stay still’ action
because this would make the prediction task maximally easy: there would be no changes
in the current sensory information from one cycle to the other. While it is interesting that
the trajectories that actually emerge do not have this simplified character, the question
can be explicitly posed: is the advantage in learning with internally generated actions due
to the changes that are observed in these actions or to the fact that internally generated
actions are generated by the same network that must learn to predict their sensory
consequences?

To answer this question we have compared how networks learn to predict based on
their own internally generated actions and how they learn on the basis of actions that are
generated by another network already trained to predict. If the critical factor in
facilitating learning is the changes in motor behaviour which are a by-product of
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prediction learning, then prediction learning should be equally easy in the two
circumstances—or even better for the network trained with actions generated by an
already trained network since in this case the actions incorporate the changes right from
the beginning. On the other hand, if what makes internally generated actions a better
basis for prediction learning is that fact that they are internally generated, then learning
on the basis of actions generated by an already trained nerwork should be no better than
learning based on randomly generated actions.

We have trained a set of network to predict the sensory consequences of their own
actions. After training each network generates a sequence of actions which is then used as
the input file for a new set of networks that must learn to predict. The results are shown
in figure 6(a) for the networks of the first experiment and in figure 6(b) for the networks of
the second experiment. The error curve for the networks trained using actions generated
by already trained networks is as bad as that of the networks trained with randomly
generated actions.

We conclude that learning to predict the sensory effects of actions is facilitated by the
fact that the same network (i.e. the same connection weights) that must learn to predict is
also generating the actions whose sensory effects it must predict. Prediction learning
causes changes in the actions that are generated by a network but these changes do not
by themselves facilitate prediction learning. If a network is trained to predict the sensory
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Figure 6. Prediction error curves for (A} self-generated movements, (B) random movements,
and (C) movements generated by another network, for (g} body rotations or displacements
and (b} arm movements.
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effects of actions which incorporate these changes (in that they have been generated by
another network already trained to predict) but have not been self-generated, it will not
learn any better that a network trained on the basis of externally chosen random actions.

3. Learning to predict the sensory consequences of one’s own actions makes it easier to
learn to attain goals with those actions

A network which learns only to predict the sensory consequences of its own actions and
stops there would be the nervous system of a purely speculative or contemplative
organism. What is the practical advantage of such learning? The ability to predict the
sensory consequences of one’s own actions implies possession of an internal model of the
environment in which those actions must be executed, a model which is necessary to
attain some goals in that environment. One might think that such an internal model is at
least in part constructed through the kind of prediction learning that we have discussed
in the preceding section. If this is true, then learning to predict the sensory consequences
of one’s own actions should make it easier to attain goals with those actions. In learning
to predict, an organism learns what changes in the environment or in its relationship
with the environment will follow various actions in its repertoire. To attain a goal the
organism must select an action that has a desired consequence. Hence, the two tasks are
clearly related. However, learning to predict has the advantage that the organism can
utilise the teaching input automatically provided by the environment and, furthermore,
there is not much cost in making a prediction error. On the other hand, as we will discuss
below, learning to attain goals with one’s own actions is less likely to be based on
external supervision and, furthermore, ‘errors’ in this case can be much more costly than
prediction errors. We conclude that at least for more advanced organisms, i.e. organisms
with a more complex, learned, flexible behaviour, prediction learning will be an
important occupation, especially during development, and that the functional sig-
nificance of prediction learning is to help the organism learn to attain goals with its
actions. (For related research that connects prediction learning with goal attainment
learning (see Jordon (1989) and Kuperstein (1988).

One problem that must preliminarily be solved when talking of goal attainment is
how to make a network learn to reach goals with its actions. Consider a network that
controls the organism which turns and moves in a bidimensional environment. The
environment contains an object, say a food element, and the network learns to predict
the position of the food relative to the organism, expressed in terms of distance and angle
from the organism. Assume now that we want the organism to learn to approach the
food element, i.e. to select the next action in such a way that this action is more likely to
bring the organism closer to the food element and that a sequence of actions is more
likely to bring the organism to where the food is located. (Since a food element
disappears when the organism steps on it, we will say that the organism ‘eats’ the food.)
Remember that during prediction learning the network was free to choose the next
action at its will and there was no teaching of any kind as to which action to select.
However, as we saw, as a spontaneous by-product of prediction learning the network
was induced to modify somewhat its trajectories.

But now we want to change the action output of the network in such a way that the
organism exhibits efficient food-approaching trajectories. To use a supervised teaching
method such as back-propagation for this type of learning would not be very plausible
for ecological networks. Each action generated by the network would have to be
compared with the ‘correct’ action in those circumstances, i.e. with the action most likely
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to bring the organism nearer to food. However, it would not be clear at all where this
teaching input would come from. Furthermore, in many circumstances we, as experi-
menters, may not be able to identify the best solution to a problem and it would be much
better to have a network discover its own solutions and perhaps come up with some
solutions that we would not have thought of. (For a discussion of the problems of
teaching complex trajectories to reach a final goal, see Tesauro and Sejnowski (1989).)

Other weaker supervised teaching methods such as reinforcement learning (Williams
1988) would partially but not entirely solve the problem. In reinforcement learning the
teaching input is not a description of the correct output, as in back-propagation, but only
a quantitative evaluation of the output generated by the network. This might be
appropriate for the final ‘consummatory’ act of eating food but not for the selection of
actions in approaching food.

For the above reasons we have discarded supervised teaching methods for goal
attainment learning and we have made recourse to one form of evolutionary learning
which is based on random mutation and selective reproduction. In other works, to teach
networks to generate food-approaching trajectories we have used a method which does
not involve any direct weight change in individual networks but rather is based on
weight mutation and selection in whole generations of networks (Nolfi et al 1989).

An initial generation of N networks, each with its initial random matrix of connection
weights, is allowed to move freely in a certain number of food-containing environments.
Each network ‘lives’ alone in an environment containing multiple food elements.
However, sensory information only comes in any particular time from the nearest food
element. Given the different random assignment of connection weights, some networks
will happen to have weights that given some sensory input from a food element will tend
to generate actions that bring the organism nearer to the food while other networks will
not exhibit this type of approaching behaviour. At the end of their life, which has the
same length for all networks, the networks are rank ordered in terms of a ‘fitness’
measure, i.e. how many food elements they have eaten. Only the best are allowed to
reproduce by generating copies of their weight matrix (offspring). In addition, the weight
matrix of each offspring receives a limited amount of random mutation resulting in some
offspring likely to be worse and some better than their parents. However, selective
reproduction ensures that the mutations that result in better food-approaching trajec-
tories are more likely to be retained than other mutations.

The method has many similarities to the genetic algorithms of Holland (1975). There
are two main differences. The first is that the material on which selection operates is a
population of binary digit vectors in Holland’s algorithms and a population of
connection weight matrices in our case. One can specify a network’s weight matrix using
a binary digit vector but then the problem of mapping binary numbers onto continuous-
value weights must be solved. The other difference is that Holland uses crossover,
inversion, and mutation as genetic operators whereas we only use mutation. The reason
we restrict ourselves to mutation is that crossover and inversion appear to be more

appropriate for vectors while mutation is perfectly appropriate for weight matrices.
We have used our evolutionary method both for teaching organisms that move in

space to approach food and for teaching organisms with a moving arm to move their arm
so that its endpoint (hand) reaches an object. Since we were interested in the role of
prediction ability in goal-attainment learning, we have run two different simulations in
cach case. In one simulation there is no teaching of the prediction ability but only
evolutionary emergence of the ability to attain goals (eating food and reaching objects,
respectively). In the second simulation, in addition to subjecting populations of networks
to random mutation and selective reproduction to evolve food-approaching and object-
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Figure 7. Increase of food eaten by 50 successive generations with (upper curves) and without
(lower curves) individual prediction learning for (a) the average and (b) the best individual.

reaching behaviour, we also teach individual networks during their ‘lifetime’ to predict
the sensory consequences of their actions. Although inheritance is Darwinian and not
Lamarckian, ie. the weight matrix which is copied at reproduction is the parent’s
original matrix at birth, not the modified matrix that results from prediction learning at
the end of life, we expect that prediction learning will accelerate the evolutionary
emergence of the goal-attainment capacity.

There were 100 networks per generation and the best 20 networks each had five
offspring (copies of their weight matrix) at the end of their lifetime so that a new
generation of 100 networks came into existence. Five randomly selected connection
weights were mutated in each offspring matrix by adding a quantity randomly selected
between + 1.0 and — 1.0 to these weights. Each individual network had a total lifetime of
5000 actions in five worlds. For the organisms displacing themselves a world was a
10 x 10 cell environment containing ten randomly distributed pieces of food. Sensory
information at any particular time specified angle and distance from the nearest food.
For the organisms with a moving arm a world was the semicircular environment that has
already been described, with the addition of 20 randomly distributed objects. The
network for the latter organisms included two additional input units for coding angle
and distance of the object that was nearest to the ‘hand’ at any particular time.

The results are presented in figures 7 and 8. Figure 7 shows the evolutionary increase
in the number of food elements eaten by the moving organism with and without
prediction learning during life, for (a) the average and (b) the best individual across 50
generations. Figures 8(a) and 8(b) give the same results for the arm-moving organism
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with regard to the number of objects grasped across 65 generations. As these figures
show, the evolutionary increase in goal-attainment capacity is greater in both cases for
the organisms that learn during their life to predict the sensory consequences of their
actions.

4. Discussion

Neural networks can be taught to predict the sensory consequences of their planned
actions given those actions and the current sensory situation as input. Prediction
learning is easier if the actions whose sensory consequences must be predicted are
generated by the same network that is learning to predict instead of being randomly
generated from outside. Although a network which is learning to predict progressively
changes the sequence of actions it generates, it is not these changes in themselves that
explain why prediction learning is easier for self-generated actions. Actions that are
generated by a network which has already learned to predict, and that therefore
incorporate these changes, do not make prediction learning easier when they are used by
another network for its own learning. What appears to be critical is that the same
connection weights that are used for generating actions are also used for predicting what
the sensory consequences of those actions are.

The use of a supervised teaching method such as back-propagation to teach this
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Figure 8. Increase of number of objects grasped by 65 successive generations with (upper
curves) and without {lower curves) prediction learning for {a) the average and (b} the best
individual.
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prediction ability is quite plausible behaviourally since it is the environment itself that
provides the network with the necessary teaching input for comparing the predicted and
the actual sensory consequences of its actions. In fact, we believe that learning to predict
the sensory consequences of their own actions is an important part of what young
organisms do in their everyday life. This must be especially true for organisms whose
behaviour has a large learned component. Learning to predict the sensory changes
resulting from one’s own actions is one way—perhaps the most basic way—to construct
an internal model of the environment in which an organism must pursue and possibly
attain its goals. If this internal model is largely genetically determined and the organism’s
behaviour is restricted and unmodifiable, then there is not much reason for learning to
predict the consequences of one’s own actions. But if the model of the environment must
be learned and the organism’s behaviour must adapt to this progressively learned model,
then prediction learning should emerge as a fundamental occupation of the young
organism.

In fact, prediction learning can be taken as a neural network model of what is called
‘exploratory behaviour’ in newborn and young children (Gibson and Spelke 1983).
Exploratory behaviour is usually viewed as a way of exposing oneself to a larger variety
of environmental conditions (sensory input). This is consistent with a view of the
progressive construction of an internal model of the environment as based on extracting
information from the sensory input as such. This view is quite common in psychology
and in the cognitive sciences more generally and, as we have noted, may also be implicit
in much research on neural networks.

The view espoused here is more action-based. The internal model of the environment
that any minimally flexible organism must construct to be able to attain goals in that
environment is primarily based on extracting information not from the sensory input as
such but from the systematic relationship which the organism notices between its own
actions and the resulting sensory input. Our view is also more active in that the organism
does not passively notice this systematic relationship but actively predicts what the
sensory consequences of its actions will be and modifies itself (learns) as is necessary to
attain a better prediction ability.

Another consequence of prediction learning is that the organism may change its
exploratory behaviour in order to get better prediction results. In fact, one potential
advantage of the present view of the construction of an internal model as prediction
learning is that this view might explain some aspects of the global changes in behaviour
that are observed in early life. As we have reported, a neural network that learns to
predict the sensory consequences of the actions that the network itself has generated
tends to modify those actions. An interesting research perspective would be to relate
these changes in the motor behaviour of networks that are learning to predict to the
changes from more random to more systematic movements that may be observable in
infants as they learn various behaviours.

This view of the progressive construction of an internal model of the environment is
obviously related to Piaget’s conception of intelligence as ultimately based on action.
More specifically, one might think that the type of prediction learning that we have
discussed captures at least one component of the notion of a circular reaction which is
used by Piaget to analyse the development of sensory-motor intelligence (Kuperstein
1988). Prediction learning appears to capture the knowledge-acquisition component of
circular reactions but not their motivational component which is linked with their
producing what Piaget calls ‘desirable results’. Furthermore, there is nothing in our
present notion of prediction learning that would allow us to distinguish between
‘primary’, ‘secondary’, and ‘tertiary’ circular reactions, as Piaget does.
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Before ending this discussion of prediction learning we want to emphasise that we
have considered only some limited aspects of predicting the sensory consequences of
one’s own actions. We have examined the predictions of how the position of an object
relative to the organism changes as the organism moves in space and how the position of
one part of an organism’s own body changes with respect to the rest of the body as the
organism moves that part (hand). But many other instances of this type of prediction
learning await examination. We have mentioned predicting the auditory consequences of
phono-articulatory actions, where the sensory effects depend only on the particular
action which is executed and are largely independent of the current sensory input. More
complex cases include predicting how the position of an object A with respect to another
object B will change as a consequence of the organism acting on A4, which might be
critical for the development of tool use, and predicting the changes in the behaviour of
other organisms that are caused by one’s own actions, which might underlie much of
social interaction and communication.

One justification for claiming that prediction learning is at least in part the same
thing as constructing an internal model of the environment is that one can demonstrate
that learning to reach some goals in an environment—which presumably presupposes at
least in advanced organisms the possession of such an internal model—is facilitated if
the organism knows how to predict. We have demonstrated this positive influence of
prediction learning on action or goal-attainment learning in two.different instances: (i)
predicting the new position of an object, as the organism moves, facilitates the approach
to that object, and (ii) predicting the new position of the hand, as the organism moves its
arm, facilitates the movement of the arm so as to reach objects with the hand.

Of course, an internal model of the environment consists not only of the ability to
predict the sensory consequences of one’s own actions but also the ability to predict
changes in the environment that are independent of the one’s own actions. This is an
important topic of research in itself that we have explicitly not discussed. However, we
have some preliminary results suggesting that the positive relationship between predict-
ing ability and goal-attainment capacity may hold in this case too. We have trained a
network to rotate a single eye so as to keep the eye’s line of sight on a target object that
moves regularly in space. We have compared learning this task in two different
situations. In one situation the network only learns to rotate the eye in order to keep it
on target. In the other the network is also taught to predict where the target object is
going to be in the next moment in time. Learning to keep the eye on target is quicker if
the network also learns to predict the next position of the target. If predicting what will
happen next is importantly related to having an internal model of the environment which
is useful for attaining goals in the environment, the capacity to attain goals should be
learned more easily and more quickly if the organism can predict both those changes that
depend on its own actions and those that are the result of independent environmental
events.

5. Conclusion

We have introduced the notion of an ecological network and we have attempted to show
that research on ecological networks may be necessary if many important aspects of the
learning and behaviour of organisms must be captured by neural network models.
Basically, an ecological network is a network that lives and learns in an environment. It
is the environment with its structure and dynamics that determines the conditions in
which behaviour and learning take place. More specifically we have proposed two
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hypotheses concerning ecological networks and we have presented some initial data from
simulation experiments bearing on those hypotheses. The two hypotheses are, firstly,
that a basic task of ecological networks is to learn to predict the sensory consequences of
the actions that the network itself generates and, secondly, that this prediction learning
helps the network in learning to attain goals with those actions. A number of very
interesting directions of research are open if one complicates the extremely simple
situations used in the experiments already performed.
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