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1. Introduction 

 

This chapter addresses the topic of how embodied neural agents coordinate together to exhibit 

interesting social behaviors. Embodied neural agents are defined in this Introduction. Sections 2 

through 5 describe simulations of collective phenomena emerging from the interactions among 

embodied neural agents living in the same environment. Section 2 discusses spatial aggregation and 

proto-social behavior, Section 3 communication, and Section 4 cultural evolution. Section 5 

summarizes the chapter and draws some conclusions. 

 

Neural agents are agents whose behavior is controlled by neural networks, that is, by control 

systems that reproduce in simplified ways the physical structure and the physical way of 

functioning of the nervous system. A neural network is a set of units (neurons) linked by 

unidirectional connections (synapses between neurons). Connections have a quantitative weight 

(number of synaptic sites between pairs of neurons) and a plus or minus sign (excitatory and 

inhibitory synapses). At any given time every unit has an activation level (firing rate of neurons) 

which depends on either physico/chemical events outside the network (input units) or the sum of 

excitations and inhibitions arriving to the unit from connected units (internal and output units). 

Activation propagates from the input units to the output units through one or more intermediate 

layers of internal units. The pattern of activation of the output units determines some effect outside 

the network.  

 

At the level of the individual agent the network’s architecture of connections and the weights of the 

individual connections can change as a consequence of the agent’s interactions with the external 

environment, and these changes translate into changes in behavior (learning). At the population 
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level an agent is a member of an evolving population of individually different agents and the 

architecture of connections and/or the connection weights of the agent’s neural network are encoded 

in the agent’s inherited genotype. Individual genotypes reproduce selectively and with the constant 

addition of new variants (genetic mutations) and this results in neural/behavioral changes in 

successive generations of agents (evolution).  

 

Neural networks are simulation models, that is, they are theoretical models which are expressed as 

computer programs. Neural networks can be viewed as part of Artificial Life, which is an attempt at 

studying all phenomena of life by reproducing them in artificial systems, either simulated in a 

computer or physically realized in robots and other physical artifacts. When neural networks are 

seen in the framework of Artificial Life, research using neural networks tends to be different from 

classical neural network research in a number of respects (Parisi, Cecconi & Nolfi, 1990; Cliff, 

1991; Cliff, Harvey and Husband, 1993; Nolfi & Parisi, 1997; Nolfi & Floreano, 2000; Parisi, 

2001). While classical neural networks do not have a body, do not interact with a physical 

environment (their only “environment” is the researcher), are viewed as isolated individuals, and 

change only because of individual learning, neural networks in an Artificial Life perspective: 

 

- have a body 

- live in and interact with a physical environment 

- are members of biologically and, possibly, culturally evolving populations of networks 

- have a genotype which is the result of biological evolution and which determines important 

aspects of the network’s structure and development and therefore of the individual’s 

behavior. 

 

Embodied neural agents adopt the same conceptual and explanatory apparatus of the natural 

sciences and they try to fully integrate the study of behavior in the study of nature. Everything 

which takes place inside a neural network and in the network’s interactions with the outside 

environment and with the rest of the organism’s body (Parisi, in press) are physical causes 

producing physical effects, and everything is ultimately quantitative in nature.  

 

Embodied neural agents are part of a new research paradigm which has recently challenged the 

traditional view according to which intelligence is an abstract process that can be studied without 

taking into consideration the physical aspects of natural systems (Pfeifer & Scheier, 1999). The new 

paradigm tends to stress situatedness, i.e., the study of systems that are situated in and interact with 
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an environment (Brooks, 1991; Clark, 1997), embodiment, i.e., the assumption that systems have 

bodies, receive input from physically situated sensors, and produce motor actions as output (Brooks, 

1991; Clark, 1997), and emergence, i.e., the view of behavior and intelligence as the emergent 

result of the fine-grained interactions between the control system of the agent, its body structure, 

and the external environment. An important consequence of this view is that the agent and the 

environment constitute a single system, i.e., the two aspects are so intimately connected that a 

description of each of them in isolation does not make much sense (Maturana & Varela, 1980, 

1988; Beer, 1995). 

 

Although embodied neural agents tend to be simple and to live in simple environments, if one 

places many agents together in the same environment interesting collective behaviors tend to 

emerge from their interactions. In the next three sections various aspects of sociality are explored 

using collections of simple embodied neural agents that live in the same environment: spatial 

aggregation, simple coordination, communication, and the emergence and evolution of culture. The 

agents do not initially possess any ability or any interesting behavior since their behavior results 

from the connection weights of their neural network and these connections weights initially are 

random. The connection weights change in the course of the simulation until the appropriate 

behaviors underlying interesting social phenomena emerge. In other words, the system that controls 

the behavior of the agents is not designed by the researcher but is evolved or learned, and the 

researcher only creates the conditions in which evolution or learning take place.  

 

Evolution can be either biological or cultural and in both cases it can be simulated using a genetic 

algorithm. In biological evolution an agent inherits from its parent(s) a genotype encoding the 

connection weights of the agent’s neural network. Reproduction is selective in that not all 

individuals have the same number of offspring. Furthermore, reproduction is accompanied by the 

constant addition of new variants to the pool of genotypes because random errors may occur when 

copies of genotypes are made and because portions of one parent’s genotype may be recombined 

with portions of the other parent’s genotype if sexual reproduction is adopted. In cultural evolution 

information is transmitted not via copied genotypes but through learning from others. One 

individual, the “student”, learns to behave in the same way as another individual, the “teacher”, by 

being exposed to the same input to which is exposed the other individual and by using the output of 

the other individual as teaching input to change its own connection weights as part of the 

backpropagation procedure. Also in this case, reproduction is selective in that not all teachers have 

the same number of students, and it is accompanied by the constant addition of new variability to 
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the cultural pool because random errors occur when a behavior is transmitted from teacher to 

student and because new behavioral variants which are recombinations of parts of existing variants 

may be invented. If the individuals that reproduce or the teachers that have students are individuals 

that are better able at exhibiting some particular behaviour than the individuals that do not 

reproduce or do not have students, and if the new variants happen to be better than the existing 

variants, what is observed in both cases is the evolutionary emergence of initially nonexistent 

behaviours. 

 

2. Spatial aggregation and coordination 

 

The environment in which embodied neural agents live can contain nonliving objects, organisms 

belonging to other species, conspecifics, and artefacts created by conspecifics. Since neural agents 

have a body and they live in a physical environment, all interactions of neural agents with their 

environment are physical interactions. If the environment contains many embodied agents, all 

interactions among embodied neural agents consist in alterations of the external environment which 

are caused by the behavior of one agent and which affect other agents.  

 

Consider the following simulation. A collection of agents live in the same environment which 

contains randomly distributed food elements. The neural network which controls an agent’s 

behavior has input units encoding the position of the single food element which is currently nearest 

to the agent and output units that allow the agent to move in the environment. The neural networks 

of all agents have the same architecture but at the beginning of the simulation each individual agent 

is assigned a genotype which encodes a different random set of connection weights for the agent’s 

neural network. Each individual lives for a total number of time units (input/output cycles of its 

neural network) which is identical for all individuals. At birth each individual has zero energy but 

its energy is incremented by one unit each time the individual by moving in the environment 

reaches (eats) a food element. When the energy of the individual reaches a threshold, the individual 

generates a new individual (offspring) which inherits the same genotype of its (single) parent, with 

the addition of some random changes to the quantitative value of some of the weights. The 

offspring is placed near its parent and the parent’s energy returns to zero.  

 

While at the beginning of the simulation the agents are not very good at reaching food because of 

the random connection weights, the selective reproduction of the individuals that are better able to 

reach food and to increase their energy, and the constant addition of new variability to the pool of 



 5

genotypes because of the random variations in the inherited connection weights, lead to an 

improvement in the average ability to reach food in the population with each successive generation. 

After an initial transient phase, population size stabilizes at a value which reflects the quantity of 

food present in the environment (carrying capacity). Food is periodically re-introduced to 

compensate for the food eaten, and the carrying capacity of the environment, and therefore, 

population size, is a function of the length of the interval between successive food re-introductions.  

 

The results of the simulation show that if food is re-introduced sufficiently frequently, the 

population distributes itself homogeneously in the environment. However, if food is reintroduced 

less frequently, an interesting collective phenomenon emerges with respect to the spatial 

distribution of the population: one observes oscillatory migratory waves of the agents in the 

environment. The entire population of agents may concentrate in a particular zone of the 

environment but, after a while, the population leaves the zone and disperses in the environment, 

with different individuals going in different directions. When the agents reach the wall that limits 

the environment, they remain near the wall for a while and then they slowly return to the initial 

zone in which they concentrate again. This oscillatory movement of the population repeats itself 

periodically until the end of the simulation (Figure 1). 
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Figure 1. Oscillatory migratory waves of agents. In (1) the agents concentrate in a zone of the 

environment which happens to have more food than other zones. In (2), after having depleted of 

food the originary zone, the agents migrate toward the periphery of the environment where food has 

accumulated in the meantime. In (3) the agents have reached the periphery. In (4), after having 

depleted the periphery, they return to the originary zone of concentration where food has returned 

since they left the zone. 

 

How can one explain this collective phenomenon of periodic oscillatory migratory waves? For 

reasons that are purely based on chance some zone of the environment may contain more food than 

other zones and therefore the agents looking for food tend to move toward the zone with more food 

and concentrate there. However, as more and more agents concentrate in the same zone and eat the 

food which is found there, the zone tends to become progressively deprived of food. As the zone 

empties, the agents leave the zone in different directions to migrate in more peripheral zones which, 

having been without agents for some time, contain much food. The same phenomenon repeates 

itself in the zones located peripherally with respect to the initial zone. As the peripheral zones are 
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emptied of food because of the many agents that have reached those zones, an opposite wave of 

migration towards the initial concentration zone takes place. Therefore, the population ends up 

periodically migrating from a more centrally located zone to the periphery and back to the central 

zone (Parisi, Piazzalunga, Cecconi & Denaro, 1994). 

 

The simulation demonstrates that interesting collective phenomena may emerge in populations of 

very simple neural agents even if the agents cannot be said to possess social behaviors or social 

abilities. The agents in this simulation do not even perceive each other. They only perceive the food 

elements. Furthermore, food is randomly and, therefore, at the appropriate scale, equally distributed 

in the entire environment. This notwithstanding, an interesting collective spatial pattern emerges 

from the simulation. As already mentioned, the agents do not perceive each other and they respond 

to input from the nonsocial environment (food) with behavior which is uniquely directed to the 

nonsocial environment (eating the food). However, if a population of agents lives together in the 

same physical environment, by altering the physical environment with their behavior (eating the 

food) individual agents can have an indirect influence on other individuals since each agent 

responds to an environment which has been altered by the behavior of other agents. This can 

produce emerging collective phenomena in the spatial distribution of the population such as the 

oscillatory migratory waves observed in the simulation. 

 

The agents described periodically aggregate and disaggregate (disperse) spatially as a result of the 

changes that their behavior causes in a nonsocial environment in which the resources by themselves 

are randomly distributed. In real populations, both animal and human, social aggregation can result 

from the particular spatial distribution of resources in the environment. Many individuals can end 

up near to each other simply because they tend to approach the same localized resource such as a 

food patch or a water source or a lecture in a classroom. In these circumstances too, the agents’ 

behavior which results in social aggregation has not evolved for that function. Each individual 

approaches food or water or the classroom for eating or drinking or learning, not for social 

purposes. However, even if it is a simple by-product of nonsocial behaviors social aggregation can 

be a favourable pre-condition for the emergence of social behaviors such as communication and 

economic exchange among individuals that happen to find themselves near each other. 

 

In other circumstances, however, social aggregation may not be simply a by-product of behavior 

which has emerged for other purposes but is the result of behavior which has emerged exactly 

because it produces spatial aggregation. One can distinguish between two types of social behavior 



 8

that results in social aggregation and, more generally, social interaction. In Type 1 social behavior, 

one individual alters the environment of another individual but it does so for its own, nonsocial, 

reasons, while the second individual responds to the alteration of the environment by the first 

individual with a behavior which has emerged with the function of producing social aggregation or 

interaction. In Type 2 social behavior, both the behavior of the individual which alters the 

environment of another individual and the behavior of the individual which reponds to this 

alteration of the environment on the part of the first individual emerge with the function of 

producing social aggregation or other social phenomena.  

 

Let us consider Type 1 social behavior first. Imagine a population of agents very similar to the 

agents of our previous simulation with the only difference that an individual’s life is made up of 

two successive stages. In the first life stage the individual is a ‘child’, which means that the inputs 

units of its neural network encode the current position of the individual’s parent, not the position of 

the nearest food. In other words, a child sees its parent but does not see the food. This means that a 

child cannot find food by itself and would starve and die unless its parent gives some of its food to 

the child. In the second stage of an individual’s life the individual becomes an ‘adult’ and is exactly 

identical to the agents of our previous simulation. An adult’s neural network encodes the position of 

the nearest food and the individual responds by approaching and capturing the food. However, some 

portion of the food which is captured by an adult individual is not eaten by the individual but is 

given by the adult individual to its children provided the individual has children. 

 

But children are not passive receivers of food. In order to obtain food from their parents it is their 

responsibility to remain in close proximity to their parents. This is why the input units of a child’s 

neural network encode the current location of the child’s parent in the environment. The child must 

be able to respond to this input by approaching its parent. Since a child’s parent moves in the 

environment looking for food, this means that children should follow their parents so that a child’s 

distance from its parent never exceeds a certain threshold. This in fact is the children’s behavior 

which is observed after a certain number of generations in the simulation (Parisi, Cecconi & Cerini, 

1995) (Figure 2).  
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Figure 2. A “child” (small square) evolves the behavior of following its “parent” (large rectangle) 

which is looking for food (circles) because this allows the “child” to obtain food from its “parent”. 

 

In the simulation adults and their children tend to form small social aggregations of kin-related 

individuals (families) that move together in the environment. These social aggregations are 

exclusively due to the evolved behavior of children which respond to visual input originating from 

their parents by approaching their parents and remaining in their vicinity. Parents do not contribute 

with their behavior to these social aggregations since, as adults, they simply look for food. This, 

then, is a Type 1 situation in which agents (children) evolve a behavior in response to the input 

provided by conspecifics (parents) but the parents’ behavior that provides this input for their 

children evolves for independent, nonsocial, reasons (looking for food).  

 

One moves toward a Type 2 situation if one assigns also to the parents a role in maintaining the 

spatial aggregation of their family. In the simulation that has been described the behaviour of 

parents that give some of their food to their children is hardwired and not evolved but also this 

behavior can be evolved. Children would starve to death unless their parents provide them with 

food, and in these circumstances their parents’ genes would not be transmitted to the next 

generation. Therefore, it is in the parents’ genetic interest to give some of their food to their 

children. In the new simulation an agent’s genotype includes not only the genes that encode the 

connection weights of the agent’s neural network but also an additional gene which encodes in a 

simple quantitative way the agent’s tendency, when it becomes an adult, to give some of its food to 

its children. The value of the gene varies among the agents and at the beginning of the simulation is 

randomly generated for each agent. Offspring inherit the same value of the gene of their parents 

with random mutations that may slightly increase or decrease the gene’s value. The individuals that 
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tend to reproduce are individuals that not only are good at finding food but also have a propensity to 

give some of their food to their children. Even if giving food to one’s children reduces an 

individual’s chances to generate additional children, the results of the simulation show that after a 

certain number of generations the “give food to your children” gene stabilizes at an intermediate 

quantitative value which takes into consideration both an individual’s need to generate additional 

children and its need to keep alive and bring to sexual maturity the children which the individual 

has already generated. By their evolved tendency to give food to their children parents contribute to 

social aggregation because it is this tendency of parents that motivate children to remain near their 

parents. 

 

Many real life collective behaviors, e.g., the behavior exhibited by schools of fish or flocks of birds, 

are in between Type 1 and Type 2. Many fish and birds move together when they look for food or, 

in the case of birds, migrate to distant places. If being in the vicinity of conspecifics confers some 

adaptive advantage in terms of increasing the probability of finding food or avoiding predation, 

agents that are able to perceive their conspecifics will evolve a tendency to approach their 

conspecifics so as to maintain proximity even as the group of agents collectively moves in the 

environment. As in the preceding simulation in which children actively maintain proximity to their 

parents, the behavior of responding to the input originating in a conspecific evolves because it 

produces proximity to conspecifics but the behavior of the conspecific that generates this input has 

not necessarily evolved for this reason. However, the spatial aggregation that is maintained in a 

collection of agents is different from the behavior of the pair of agents constituted by a parent and 

its child (or children). A parent which moves in the environment looking for food is not influenced 

by the behavior of its children and, in our simulations, the parent does not even perceive its 

children. In contrast, in a group of agents moving together in the environment each individual both 

perceives and is perceived by its conspecifics and each individual, either directly or indirectly, both 

influences and is influenced by the other individuals in the group. In fact, in a group of agents 

maintaining spatial proximity and moving together in the environment local causes become global 

causes. A local cause is an event which takes place in one particular agent and which has some 

direct influence on another agent. A global cause is an event or state at the level of the entire group 

of agents which has some influence on each individual agent belonging to the group. In our 

simulations a parent’s behavior is a local cause of its children’s behavior. In a school of fish or in a 

flock of birds each agent is influenced by the other agents and therefore when an individual agent 

influences another individual agent this influence reflects the state of the entire group. The behavior 

of each agent is both a local and a global cause of the behavior of the other agents.  
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The collective behavior of a group of agents that move together in the environment has been 

simulated by various researchers. For example, Reynolds (1993) evolved the control system of a 

group of agents (flock of birds) placed in an environment containing obstacles for the ability to 

collectively avoid the obstacles. The group of agents splits before an obstacle and re-unites after 

passing the obstacle. Baldassarre, Nolfi & Parisi (2003) (cf. also Baldassarre, Parisi and Nolfi, in 

press) have simulated various collective behaviors with groups of robots (“swarmbots”). A group 

of, say, four robots each with its own control system (neural network) are physically linked in 

various spatial configurations. For example, the four robots can form a line with each robot 

physically linked to the next robot in the line. The neural network of each robot has input units 

encoding the strength with which the individual robot is pushed or pulled by the other robots and 

the direction in which the robot is pushed or pulled by the other robots. The network’s output units 

control two wheels that allow the robot to move in the environment. These “swarms” of robots 

cannot be said to form spontaneously because the robots are already united through the physical 

links, but they evolve various interesting collective behaviors: they quickly line up their wheels in 

order to move coherently, i.e., in the same direction, and they are able to negotiate obstacles, to 

reach light targets if each robot is provided with additional input units encoding the location of the 

target, and to help single members that happen to fall in holes (Figure 3). These collective behaviors 

appear to be very robust in that they are exhibited even when the robots become members of new 

“swarms” made up of different numbers of robots and with different spatial configurations with 

respect to the originary “swarm” in which the robots have evolved. In all these simulations each 

robot causes inputs for the other robots and at the same time is influenced by the inputs caused by 

the other robots. Therefore, a local influence of one robot on another robot is at the same time a 

global influence of the entire “swarm” of robots on each individual robot. 
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Figure 3. Top-Left: The hardware prototype of an individual robot. Top-Right: Four simulated 

robots linked up to form a linear structure. Bottom: The trajectory followed by a star-shaped 

swarmbot made up of eight individual robots in an environment with obstacles, furrows, and holes. 

The swarmbot is depicted in its final position near the light target represented by the white sphere. 

The black irregular lines indicate the trajectories followed by the eight robots forming the 

swarmbot. While isolated robots (indicated by arrows) get stuck in furrows, the swarmbot passes 

over the furrows, succeeds to free its component robots that fall in holes, and searches and finds the 

light that was not visible from the starting position (center of the graph).  

 

Coordinated behavior in embodied agents spontaneously emerges also with other types of tasks 

such as herding in response to predators and the collective building of structures. In an attempt to 

study the evolutionary origin of herding, Werner & Dyer (1993) co-evolved two populations of 

predators and prey agents which were selected for the ability to catch prey and for the ability to find 

food and escape predators, respectively. The author observed that, after some generations during 

which predators evolved an ability to catch prey, prey agents converged into small herds which 

were constantly splitting up and re-forming. More recently, Ward, Gobet & Kendall (2001) evolved 

groups of artificial fish able to display schooling behaviour. Two populations of predator and prey 

fish, respectively, were evolved in an environment containing randomly distributed food elements. 

The neural network controlling a prey’s behavior included sensory neurons encoding distance and 

direction of nearest prey, predator, and food, and the amount of changes in water pressure in 

proximity to the agent, and two motor neurons encoding speed and direction of motion of the agent. 

An analysis of distances between prey and food and between prey and predator suggests that 
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schooling behaviour is correlated with an increased probability to find food clumps and a better 

protection from predation. Finally, Theraulaz & Bonabeau (1995) evolved a population of 

constructor agents who collectively build a nest structure by depositing bricks according to their 

perception of the local environment and to a set of behavioral rules. 

 

An interesting phenomenon that can be studied with collective tasks is the emergence of 

specialization, with different individual agents spontaneously assuming different roles in the 

execution of the task. Specialization emerges both when the agents involved in a collective task are 

genetically different individuals (Yong & Miikkulainen, 2001) and when they are clones (Quinn, 

Smith, Mayley & Husband, in press). In Baldassarre, Nolfi & Parisi’s (2003) simulations, clone 

agents first have to aggregate and then move together towards a target. The most effective strategy 

includes primitive forms of "situated" specialization in which identical individuals play different 

roles according to the circumstances such as leading or following the group (see next section). 

These forms of functional specialization seem to be due to the need to reduce interference between 

potentially conflicting sub-goals such as moving toward the rest of the group to maintain 

aggregation and moving toward the target.  

 

3. Communication 

 

“Swarm” simulations still have to do with Type 1 social behavior or, perhaps, with behavior which 

is intermediate between Type 1 and Type 2. But of course behavior can evolve in agents for the 

explicit function of providing inputs to conspecifics. This behavior is called communication and the 

inputs that are provided to conspecifics are called signals. Communication clearly involves Type 2 

situations.  

 

Imagine a group of agents that has to reach a target in the environment but to be rewarded they must 

approach the target by maintaining reciprocal proximity. If the agents are initially dispersed in the 

environment, they may be unable to perceive each other and therefore they may be unable to 

aggregate and then move together towards the target. The solution is to evolve some signaling 

behavior that by providing an input to conspecifics allows the group to aggregate. The neural 

network that controls the behavior of an agent has both input units that visually encode the position 

of the target and input units that encode acoustic input originating from the behaviour of 

conspecifics (signals). The output units encode both behavior that allows the agent to move in the 

environment and behavior that produces a sound that can be heard by conspecifics. The sounds that 



 14

are produced by individual conspecifics sum together and result in a louder compound sound. The 

agents evolve an ability to recognize the direction from which the loudest sound arrives to their 

sensors, and therefore the direction in which the conspecifics are aggregating spatially, and to 

respond by moving in that direction. The results of the simulation show that the agents first respond 

to the sounds that they hear by aggregating together and ignoring the input from the target, and then 

they respond to both the sounds and the visual input from the target by moving toward the target 

while maintaining spatial aggregation (Baldassarre, Nolfi & Parisi, 2003). 

 

As already mentioned, evolved agents show a form of situated specialization. Individuals that are 

located on the frontal side of the group with respect to the light target (“leaders”) do not turn toward 

the rest of the group but keep their orientation toward the light, sometimes moving backward to 

avoid losing contact with the rest of the group. On the contrary, individuals located behind 

(“followers”) turn and move toward the other members of the group. Moreover, once a compact 

group has formed and the group starts to move toward the light, each individual tries to maintain its 

current role. The final result is that the “leader” drives the whole group toward the light while the 

“followers” only try to remain in proximity to the “leader” and to each other so that the whole group 

continues to be compact (see Figure 4). 

 
(a) 

 

(b) 

 

(c)  
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(d) 

 
 

Figure 4. Behavior displayed by four agents initially located in four different starting positions and 

orientations. In all cases the light target is located on the left side. The lines represent the 

trajectories of the four agents and the circles represent the final position of the agents after a given 

amount of time. The arrows indicate quick changes in the orientation of individual agents. 

 

Figure 4 shows how the agents play different functions in different circumstances. Fig. 4a shows 

how the individual which is closer to the light target assumes and maintains the function of 

“leader”. The individual turns toward the light and waits for the rest of the group before driving the 

entire group toward the light target. It may move backward to speed up the formation of a compact 

group but, as soon as the rest of the group gets closer, it starts to move toward the light target thus 

keeping the frontal position with respect to the rest of the group. Figure 4b shows another situation 

in which the individual which is closer to the light target does not turn toward the rest of the group 

but keeps its relative position by waiting for the rest of the group and by starting to move toward the 

light as soon as the rest of the group approaches. Figure 4c shows that individuals that are shadowed 

by other individuals and cannot see the light target (in this case the second robot from the left) turn 

and move toward the rest of the group. Finally, Figure 4d shows that a couple of individuals located 

in similar conditions with respect to the light target and to the rest of the group can assume and 

maintain the role of both leaders or followers. The overall result of being able to display and 

maintain “situated” specializations is that agents can quickly form a compact group and then move 

straight toward the light target. 

 

In the simulation that has been described the behavior of producing a sound that can be heard by 

conspecifics is hardwired. One could do another simulation in which the behavior evolves 

spontaneously since it is clearly advantageous for an individual to produce such a sound. Unless an 

individual produces the sound, the conspecifics may not be able to know where the individual is 

located and to approach the individual. However, the behavior of producing signals raises an 

interesting problem. Communication is a Type 2 situation. It requires the evolution at the same time 

of the behavior of emitting the appropriate signals in the appropriate circumstances (altering the 
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external environment in the appropriate way) and the behavior of responding to the signal 

appropriately (responding to the alteration in the environment in the appropriate way). Furthermore, 

both behaviors must be exhibited by each individual. From an evolutionary point of view, a 

behavior tends to emerge only if it is advantageous for the individual that exhibits the behavior. 

Therefore, for communication to emerge it is necessary that both the behavior of emitting the 

appropriate signal is advantageous for the emitter of the signal and the behavior of responding 

appropriately to the signal is advantageous for the receiver of the signal. In some circumstances the 

two conditions may not be both satisfied and this may prevent communication to emerge. If emitters 

do not emit the appropriate signals in the appropriate circumstances, there are no useful signals for 

receivers to respond to appropriately. If receivers do not respond to signals appropriately, it makes 

no sense for emitters to emit the appropriate signals in the appropriate circumstances. Hence, 

emitting and receiving signals cannot evolve separately but they need to co-evolve. 

 

One can imagine situations in which both the emitters of signals benefit if they emit the appropriate 

signals in the appropriate circumstances and the receivers of signals benefit if they respond 

appropriately to the signals. Consider the following simulation. A population lives in an 

environment in which there are large prey that can only be captured and killed if a sufficiently large 

group of individuals are present and hunt together the prey. The agents initially disperse in the 

environment and when an individual finds the prey it communicates to the other individuals where 

the prey is located so that the other individuals can use this information and converge to the prey’s 

location. There are two solutions to this problem. One is a more primitive and limited solution. The 

individual which has found the prey immediately emits some sound (or some similar signal that can 

be perceived from a distance) and the other individuals perceive the sound and its direction and they 

immediately approach the source of the signal. This solution is primitive and limited because it only 

works if a number of conditions are satisfied: (a) the signal is produced by the emitter as soon as it 

finds the prey, (b) the signal can be perceived at sufficiently large distances, (c) the conspecifics 

respond immediately and, of course, (d) producing the signal does not cause the prey to escape.  

 

A more sophisticated solution is the emergence of a true language in which different signals 

describe the particular location in which the prey has been found. For example, in the simulation the 

environment may contain various landmarks and different signals are emitted by the individual 

which has found the prey which co-vary with, i.e., designate, the specific landmark near which the 

prey has been found (e.g., “(near the) mountain”, “(near the) river”, etc.). This more sophisticated 

solution does not have the limitations of the former, simpler, one. A signal can be produced and 



 17

responded to at any time, it does not have to be strong to be perceived at large distances, and it 

needs not cause the prey to escape.  

 

Notice that in the situation that has been described a communication system, whether simple or 

more complex, emerges because it is advantageous for both the emitters and the receivers of 

signals. Since the prey is too large to be hunted individually, the individual which finds the prey and 

emits the signal is advantaged because its signalling behavior causes other individuals to come 

where the prey is located so that the prey can be hunted collectively. At the same time, the 

individuals that receive the signal are advantaged in responding appropriately to the signal by going 

to where the prey is located because this allows them, again, to hunt collectively the prey. One can 

imagine also other situations in which a signalling system can evolve because it is advantageous to 

both emitters and receivers of signals. An agent can emit a signal asking another individual to do 

something which seems to be useful only to the emitter of the signal, but in fact the receiver of the 

signal responds as required because this allows the receiver to get some advantage such as avoiding 

being punished by the emitter of the signal or exchanging roles with the current emitter of the signal 

in some future occasion.  

 

However, there may be other conditions in which the receivers of signals may be advantaged by 

being able to respond appropriately to the signals but the emitters of the signals have no advantages 

in emitting the appropriate signals in the appropriate circumstances. If this is the case, a signalling 

system may fail to emerge. 

 

This has been studied in the following simulation (Mirolli & Parisi, 2004; in press). A population of 

agents lives in an environment that contains both edible and poisonous mushrooms. Edible and 

poisonous mushrooms are perceptually different but, in order to recognize them and eat the edible 

mushrooms while avoiding the poisonous ones, an individual must be sufficiently close to an 

encountered mushroom to see the mushroom appropriately. If the agent is alone and it encounters a 

mushroom, the only available strategy is in all cases to approach the mushroom until the agent is 

sufficiently close to the mushroom and is able to recognize whether the mushroom is edible or 

poisonous. This is not a very efficient strategy, however, since it involves a waste of time and 

energy if the mushroom turns out to be poisonous. If a second individual is also present and is 

closer to the mushroom, the second individual can send a signal to the first individual telling the 

first individual whether the mushroom is edible or poisonous. This behavior of the second 

individual, the emitter of the signal, is clearly advantageous for the first individual, the receiver of 
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the signal, but is it advantageous for the emitter of the signal? Why should the behavior of emitting 

the appropriate signal in the appropriate circumstances emerge evolutionarily if it provides no 

advantages for the individual exhibiting the behavior?  

 

As a matter of fact, the results of the simulation show that if the emitter and the receiver in any 

given encounter are randomly selected from the entire population, a useful signalling system fails to 

emerge. Emitters fail to produce the appropriate signals in the appropriate circumstances (one 

particular signal for edible mushrooms and another, different, signal for poisonous mushrooms) 

and, therefore, in the absence of useful signals, receivers of signals cannot evolve the behavior of 

responding appropriately to the received signals. An appropriate signalling system would only 

benefit receivers of signals but not emitters of signals and this prevents such a signalling system 

from emerging. 

 

However, it is possible to create conditions in which, given the same simulation scenario, the 

correct signalling system will emerge. In the simulation that has been described the signalling 

system is genetically transmitted in that it results from the neural network’s connection weights 

which are encoded in the agents’ genotypes. These connection weights determine both which 

signals are produced by emitters and how receivers respond to signals. If emitters and receivers of 

signals in social encounters are randomly chosen from the population, the “egoism of the gene” 

prevents the signalling system from emerging because in any particular encounter the emitter of the 

signal and the receiver of the signal tend to have different genes, i.e., they are not kin-related 

individuals. An emitter that produces the appropriate signals increases the reproductive chances of 

the receiver of the signal which will tend to evolve an ability to respond appropriately to the signal 

because this ability is in its own interest. However, the receiver of the signal may not produce the 

appropriate signals when its role changes and it becomes an emitter of signals. Hence, by increasing 

the reproductive chances of the receiver of the signal, a good emitter of signals may increase the 

reproductive chances of a bad emitter of signals. In these conditions individuals that are at the same 

time good emitters and good receivers of signals tend not to emerge.  

 

But if one changes the simulation scenario and introduces the condition that in any particular 

encounter the emitter and the receiver of the signal are kin-related individuals, i.e., they have the 

same (or similar) genes because they are the offspring of the same parent, then a good signalling 

system does emerge as predicted by kin-selection theory. Good signalers, i.e., individuals that emit 

the appropriate signals in the appropriate circumstances, provide advantages to the conspecifics that 
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receive their signals and not to themselves but, since the receivers of the signals have the same 

genes of the emitters of signals, good signalling genes are maintained in the population. 

 

This simulation seems to imply that language, at least for the particular use of language which is 

considered in the simulation, can emerge only within small groups of kin-related individuals. 

However, language is more useful if it can be used in larger groups of non-kin-related individuals. 

How can language emerge in such larger groups? Furthermore, while in the simulation language is 

genetically transmitted and it evolves biologically, human language, unlike most animal signalling 

systems, is learned from others and culturally rather than genetically transmitted. Can the cultural 

emergence and cultural transmission of language be simulated? 

 

One way in which language can emerge in groups of non-kin-related individuals is if language is 

used not only to speak to others but also to speak to oneself, i.e., to think. In the simulation that has 

been described it is assumed that the receiver of a signal is able to keep in memory the signal heard 

from the emitter while the receiver is approaching the mushroom. In a variant of the same 

simulation, memory is not assumed but the receiver of the signal must evolve an ability to repeat the 

signal to itself in order to remember the signal of the emitter. This implies that good receivers of 

signals must also be good emitters of signals if they must benefit from the signals that they receive. 

In these conditions a good signalling system emerges in the population even if the emitter and the 

receiver of signals in any particular social encounter are not kin-related individuals. 

 

Another condition in which an appropriate and useful signalling system does emerge is a condition 

in which the signalling behavior is culturally rather than genetically transmitted and there is a 

genetically inherited tendency to learn from others. This genetically inherited tendency to learn 

from others has been called “docility” by Herbert Simon (Simon, 1990). Human beings appear to 

possess docility more than other animals. Docility has become part of the human genotype because 

of the great advantages it bestows on an individual which can directly learn from others many 

useful abilities and behaviors without going through long, tiresome, and sometimes dangerous 

individual experiences. Docility implies “blind” learning. Young individuals learn anything which 

adults care to teach them and, in particular, without first determining if what they learn is 

advantageous for themselves or for others. This may explain the emergence of language as a learned 

and culturally transmitted ability. When an individual is learning language, the individual is 

learning to both emit and understand signals that in some of their uses can be advantageous for the 

emitter of the signal and in other uses can be advantageous for the receiver of the signals. 
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In the new simulation an agent’s connection weights that are responsible for emitting linguistic 

signals and for responding to received signals are not encoded in the agent’s genotype but are 

culturally learned by the individual at the beginning of its life. Cultural learning, i.e., learning from 

others, is simulated by using the behavior of another individual, the teacher, as teaching input for 

the learner as the learner is learning language on the basis of the backpropagation learning 

algorithm. The learner’s connection weights are randomly assigned at birth and the learner’s parent 

functions as its teacher. In any given learning trial both the learner and the teacher are exposed to 

the same input and both respond with some output on the basis of their respective connection 

weights. When the learner is learning to emit linguistic signals, both its neural network and the 

neural network of its teacher encode the perceptual properties of an encountered mushroom and the 

output units of both networks encode a signal that classifies (names) the mushroom as either edible 

or poisonous. In the early stages of learning the learner tends to emit inappropriate signals but, by 

comparing its own signal with the signal emitted by the teacher in response to the same mushroom 

and changing its connection weights to reduce the discrepancy between the two signals, the learner 

progressively learns to emit the same signals as the teacher. When the learner is learning to 

understand the signals, the input is a signal and the output is the behavior of either approaching or 

avoiding the mushroom. Again, in the early stages of learning the learner responds differently from 

its teacher, but after a certain number of trials it learns to respond in the same way as its teacher. 

 

Considering that in the simulation only individuals that are parents function as teachers, this means 

that teachers are individuals that have been selected for reproduction and therefore tend to have a 

better language than the individuals which have not been selected for reproduction. Furthermore, 

the teaching input from a teacher is slightly and randomly changed when it is used by the learner for 

learning language, which means that, analogously to what happens with random genetic mutations, 

learners can in some (rare) circumstances develop a better language than their teachers’ language. 

At the beginning of the simulation language is very bad since the teachers belonging to the first 

generation that teach language to the members of the second generation have random connection 

weights like their learners. But language gradually emerges culturally. As in biological evolution, 

the selection of the best individuals as teachers and the constant addition of new variability by 

adding some random noise to the teaching input progressively lead to the emergence of a useful 

language in the population - a culturally rather than biologically evolved language. Notice also that 

docility is not hardwired in our agents but it evolves biologically. Docility is encoded in a special 

gene which initially has a random value and is biologically inherited from parents to offspring with 
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the usual random mutations. This value determines how many language learning trials a newborn 

individual will have and therefore how much language it will learn. Since docility is useful to the 

individual, the average value of the gene tends to increase in the population and when the 

simulation stabilizes all individuals tend to be born with a genetically inherited tendency to learn 

language from their parents. 

 

4. Culture 

 

Culture is behavior (and beliefs, attitudes, values) which are learned from others. Behavior can be 

learned from others either directly, by imitating another individual or by being taught by another 

individual, or indirectly, by interacting with technological artefacts made by other individuals. 

Interactions among agents may result in learning from others. Therefore, agents that live in the 

same environment and interact together may learn from each other. The individuals of one 

generation may learn from the individuals of the preceding generation and in this way behavior can 

be transmitted from one generation to the next. Cultural transmission, like genetic transmission, is 

accompanied by cultural change or cultural evolution. Individual agents tend to exhibit different 

variants of the same behavior and these different variants are differentially transmitted to the next 

generation, with some variants generating more “copies” of themselves than other variants. 

Furthermore, new variants of behaviors are constantly introduced because of random errors in the 

“copying” process, invention of new variants, and “copying” of variants existing in other cultures. 

Groups of agents that interact together more than with members of other groups tend to develop 

different cultures because of progressive divergence and random drift.  

 

As illustrated in the preceding section, neural agents can be used to study cultural transmission by 

having agents learn by using the output of other agents as teaching input, on the basis of the 

backpropagation procedure. In any given trial both the learner and the teacher are exposed to the 

same input and they both generate an output in response to this input which depends on the 

connection weights of their respective neural networks. The output of the learner is compared with 

the output of the teacher and the learner’s connection weights are changed in such a way that, after 

a certain number of trials, they tend to produce an output similar to the teacher’s output in response 

to the same input. Hence, any behavior or ability which is initially possessed by the teacher but not 

by the learner, is transferred to the learner. 
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If one assumes that the teacher already knows how to find food in the environment, i.e., to respond 

to visual input encoding the food’s position with some motor output which allows the agent to 

approach the food, a learner with random connection weights at birth and therefore no initial ability 

to approach food will progressively learn to approach food by imitating the teacher. If one adds 

some random noise to the teaching input, i.e., in how the learner perceives the teacher’s behavior, in 

some (rare) cases learners can end up being better able than their teachers to approach food (Denaro 

& Parisi, 1996; Parisi, 1997).  

  

For cultural evolution to take place, two conditions must be satisfied: learners must be spatially near 

to teachers in order to be able to observe and imitate the teachers’ behavior and, furthermore, the 

best individuals of the previous generation must be selected as teachers. If these two conditions are 

hardwired in the simulation, a population of neural agents which at birth have random connection 

weights will progressively acquire, in successive generations, the appropriate connection weights 

that allow them to approach food efficiently. The connection weights are not genetically inherited 

but they are culturally acquired by each individual by imitating one or more individuals of the 

preceding generation. In the early generations teachers do not have much to teach but this gradually 

changes and the ability to find food builds up through selective cultural transmission and the 

addition of random novelties (noise) to teaching inputs. 

 

Both the learners’ tendency to remain in proximity to teachers in order to learn from them and their 

ability to select as teachers the best individuals of the preceding generation may evolve genetically, 

with a process of co-evolution of both biology and culture. In one simulation the agent’s genotype 

encodes the connection weights that cause the agent to approach a teacher and therefore to be in the 

position to learn from the teacher how to approach food. These connection weights are randomly 

assigned to the members of the first generation and therefore the agents are initially unable to 

approach teachers and learn from them. However, the connection weights that cause agents to stay 

close to each other in order to learn from each other evolve because they are selectively transmitted 

with the addition of random genetic mutations from one generation to the next (Figure 5). For 

biological evolution to produce better connection weights, i.e., connection weights that encode the 

behavior of approaching teachers, the individuals that inherit these weights must also be individuals 

that are able to learn from teachers the behavior of approaching food. Hence, neither biological 

evolution (approaching teachers) can take place without cultural evolution (approaching food) nor 

cultural evolution without biological evolution. The two must co-evolve (Parisi, Piazzalunga, 

Cecconi & Denaro, 1994). 
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Figure 5. At the beginning of the simulation agents are randomly distributed in the environment 

(left). At the end of the simulation agents have evolved a tendency to stay close to each other in 

order to learn from each other (right). 

 

The ability to identify good teachers, i.e., to select as teachers the individuals of the preceding 

generation that are best able to approach food, can also evolve. This ability is encoded in a gene 

which is represented by a single number. The individuals that inherit genes with higher values are 

better able to select the best teachers. The gene is genetically inherited with some random noise, 

i.e., a randomly selected quantity is added to or subtracted from the gene’s current value. Gene 

values are randomly assigned in the initial population of agents but, with successive generations, the 

average value of the gene tends to increase since selecting as teachers the best individuals of the 

preceding generation is a pre-requisite for the cultural emergence of the ability to approach food. 

 

Cultural transmission can be direct or mediated by technological artefacts. While direct 

transmission requires face-to-face interaction, indirect cultural transmission only requires that an 

individual interacts with an artefact made by another individual. Particular technological artefacts 

tend to induce specific behaviors in the agents that use them and therefore different individuals can 

learn to behave in similar ways because they use the same technological artefacts. But technological 

artefacts are not only mediators of cultural transmission. Technological artefacts themselves can 

evolve. They can be transmitted from one generation to the next and, if technological transmission 

is accompanied by the selective reproduction of the best artefacts and the constant addition of new 

variants of the artefacts, what is obtained is technological evolution. 

 

Imagine that the agents that have to look for food in the environment in order to survive and 

reproduce inherit not only a genotype which encodes the connection weights underlying their food 
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searching behavior but also some technological artefacts, e.g., vases for storing, transporting, or 

cooking food. These artefacts allow them to extract more energy from the food they find in the 

environment and therefore to increase their survival and reproductive chances. The inherited 

artefacts cannot be directly used by the agents that inherit them, however, but they can only 

function as models to be copied in order to make new artefacts. Each agent has two neural 

networks: a network for looking for food and a network for copying artefacts. While the connection 

weights of the network for looking for food are genetically inherited, the connection weights of the 

network for copying existing artefacts are randomly assigned at birth and they are learned using the 

backpropagation procedure. The observed properties of a model artefact which has to be copied 

function both as input to the artefact-copying network and as teaching input for learning. The 

network learns to produce an artefact which has the same properties of the model artefact 

(technically, an auto-association task). This is the artefact that the agent uses. 

 

The individual artefacts are not all identical and some artefacts are better than others, i.e., they 

allow their users to extract more energy from food. If the artefacts of the preceding generation 

which are used as models to be copied by the individuals of the next generation are the best 

artefacts and if some random noise is added to the teaching input so that in some (rare) cases copies 

of artefacts turn out to be better then their models, what is observed is technological evolution. At 

the beginning of the simulation artefacts have random properties and therefore their average quality 

is very low. But the selective reproduction of the best artefacts and the constant addition of new 

artefacts due to the random noise progressively improve the average quality of the artefacts.  

 

A number of interesting phenomena can be explored using this simulation scenario. For example, 

how is the selection of the best artefacts effected? The best results are obtained if the actual best 

artefacts are directly selected for reproduction. However, it may be closer to reality to select for 

reproduction those artefacts which are used by the most successful agents. In other words, when an 

agent has to decide which artefacts to select for reproduction, the agent does not directly judge the 

quality of the artefacts (which may be something too complicated and tiresome to do) but it judges 

how successful their users are. This inevitably gives a less good evaluation of the quality of the 

artefacts since the success of an individual, i.e., the total quantity of energy that the individual is 

able to collect, depends both on its personal ability to find food and on the quality of the artefacts 

the agent uses. Hence, selecting artefacts for reproduction on the basis of the success of their users 

tends to be less efficient than selecting them in terms of their directly assessed quality. An agent can 

collect much energy because the agent is very good at finding food while the artefacts which the 
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agent uses may not be of very high quality. However, even in these conditions one observes 

technological evolution, i.e., a progressive improvement in the quality of artefacts. 

 

Another interesting question is the size of the group within which artefacts evolve. If the group is 

the family and an agent simply uses as models to be reproduced the artefacts used by one’s parent, 

evolution is very slow since the artefacts used by one’s parent may not be very good (Figure 6). 

Technological evolution is faster if the group is larger. In a simulation two populations of agents are 

contrasted. One population lives as a single integrated community. The other population is 

segmented into a number of separate communities (enclaves). If the population of artefact users is 

divided up into communities of agents that do not interact together, artefacts are selected for 

reproduction among the best artefacts of the local community, not the absolutely best artefacts at the 

level of the entire population. This has the consequence that technological improvement is slowed 

down (Figure 6). (For some real historical cases, see Diamond, 1997). 
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Figure 6. Evolutionary increase in the quality of artefacts when model artefacts to be reproduced are 

selected from among all the artefacts of the population (top), from among the artefacts of the local 

community (middle), and are those used by an agent’s parent (bottom). 

 

A final result which emerges from the simulations is that the presence of artefacts tends to increase 

the average energy (wealth) of a population of agents, which is inevitable since artefacts augment 

the quantity of energy extracted from food, but also to increase the economic stratification of the 

population. In other words, in a population with artefacts there is a greater difference in energy 

(wealth) between the average individual and the best individual than in a population without 

artefacts. This may have occurred in historical reality, for example with the introduction of farming 
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technologies in populations that previously obtained their food from hunting and gathering (Haas, 

2001). 

 

5. Summary and conclusions 

 

In this chapter some computer simulations have been described that show how interactions among 

simple embodied neural agents living together in the same environment can produce interesting 

social phenomena related to spatial aggregation, the performance of tasks that require social 

coordination, communication, and cultural and technological transmission and evolution.  

 

Agents may aggregate spatially because they modify the external environment for other reasons, 

and other agents respond to these modifications in ways that produce spatial aggregation but do not 

have this function, or they may aggregate spatially because they develop behaviors that have the 

function to keep them in proximity to other agents. Agents that are near to each other can coordinate 

their respective behaviors to accomplish tasks that no individual agent would be able to accomplish 

by itself alone. Communicating agents develop behaviors that cause specific inputs for other agents 

and the other agents develop an ability to respond appropriately to these inputs. Communication 

may be difficult to develop because it requires agents that are able to both emit and understand 

signals and both behaviors must be advantageous for the individual that exhibits them. Finally, 

agents that interact may learn by imitating other agents and new behaviors and new technological 

artefacts can emerge if behaviors and artefacts are selectively transmitted from one generation to the 

next and with the constant addition of new variants. 

 

Embodied neural agents tend to be simple in the sense that the neural networks which control their 

behavior contain a small number of units connected together in simple architectures and result in 

simple behaviors and abilities. Human beings have larger and more structurally complex neural 

networks which result in much more complex behaviours. Furthermore, the neural networks of 

human beings have lots of recurrent connections that produce the kind of self-generated inputs that 

underlie what is called “mental life”: mental images, rememberings, thoughts, predictions, 

evaluations of courses of action, decisions. However, there appear to be no obstacles in principle to 

progressively moving from simple to more complex neural networks and behaviors for embodied 

agents.  
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The reason why neural agents tend to be so simple is that neural networks cannot be designed or 

programmed but they must evolve or learn whatever abilities or behaviors they possess. The 

behavior of a neurally controlled agent depends on the particular architecture and connection 

weights of its neural network, and the architecture and connection weights that result in some 

desired behavior cannot be identified a priori and programmed by the researcher. This is why 

research using neural agents tends to be concerned with simple behaviors: any complex behavior 

must start as simple and must become progressively more complex by a spontaneous process of 

learning or evolution. This, however, might be seen as an asset rather than a liability if one assumes 

that in order to really understand how human agents behave individually and socially one should be 

able to reconstruct how their behavior has become what it is. 
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