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Abstract 

 
In this paper we investigate whether selective attention enables the development of 
action selection (i.e. the ability to select among conflicting actions afforded by the 
current agent/environmental context). By carrying out a series of experiments in which 
neuro-robots have been evolved for the ability to forage so to maximize the energy that 
can be extracted from ingested substances we observed that effective action and action 
selection capacities can be developed even in the absence of internal mechanisms 
specialized for action selection. However, the comparison of the results obtained in 
different experimental conditions in which the robots were or were not provided with 
internal modulatory connections demonstrate how selective attention enables the 
development of a more effective action selection capacity and of more effective and 
integrated action capacities.  

 
 
1. Introduction 
 
To survive and reproduce animals must engage in many different behaviours. In some cases, the 
selection of the behaviour to be currently displayed naturally follows from the state of the external 
sensors encoding information about the external environment and the internal sensors encoding 
information about the organism’s needs. But in many circumstances the internal and external 
environment present animals with many opportunities and demands for actions. For example, the 
perception of water offers an opportunity to satiate thirst but the concurrent perception of a predator 
demands an appropriate defensive response. Alternative actions relying on the same motor effectors 
(e.g. approaching water and flying away from the predator) cannot be performed at the same time. 
Thus, one fundamental capacity that organisms should display consists in action selection (Seth, 
Prescott and Bryson, 2012), i.e., the capacity to select between alternative actions afforded by the 
current organism/environmental context. In that respect, action selection should be considered as an 
instance of the more general capacity of producing multiple integrated behaviours. Action selection 
can also be interpreted as motivational choice, i.e., choosing which motivation among one’s many 
different motivations should currently control one’s behaviour (Parisi and Petrosino, 2010; Ruini et 
al 2012). 
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Although action selection and more generally action integration has been and is actively 
studied in different disciplines (ranging from ethology, neurobiology and psychology to artificial 
intelligence and robotics) the question of whether it can be simply considered as the emergent result 
of the interaction of multiple sensory-motor processes or whether it requires specialized neural 
mechanisms is still controversial (Seth, 1998; Prescott, 2007; Seth, Prescott and Bryson, 2012).  

According to many authors (Neumann, 1987;Tipper, Howard, & Jackson, 1998; Castiello, 
1999; Cisek, 2012) action selection is enabled by selective attention: i.e. the process by which 
organisms select (and process) a subset of available information by directing their sensory organs 
toward specific stimuli (overt attention) and/or by internally focusing on one part of the available 
sensory stimuli (convert attention). This hypothesis is in line with ecological accounts (Gibson, 
1979) that tend to emphasize the fact that perceptions can flow directly into actions with little or no 
intention to act (Gibson, 1979; Duncan-Johnson and Koppell, 1981; Goldberg and Segraves, 1987; 
Miller and Hackley, 1992). For different accounts that rather tend to emphasize the mediation role 
of internal processes, such as the perceptual control theory (Powers, 1973), selective attention does 
not necessarily represent a prerequisite for action selection. 

In humans, the relation between selective attention and action selection is supported by 
experiments in which human subjects are asked to reach and grasp a target object in the presence of 
distractor objects. The analysis of these experiments indicate that when the attention is allocated to 
an object, only the perceptual properties of the attended object that are relevant for the execution of 
the action (i.e., its volumetric properties and its spatial properties with respect to the hand’s frame 
of reference) are computed (Howard and Tipper, 1997; Tipper et al, 1997; Jackson at al. 1995; 
Chieffi et al. 1993; Castiello, 1996; Bonfiglioli and Castiello, 1998, Tipper et al, 1998). On the 
contrary, when attention is also driven toward a distractor object, the characteristics of the distractor 
object interfere with those of the target object during the execution of the action (Castiello, 1999). 
Moreover, Riddoch and collaborators has shown that the presence of distractor objects strongly 
interfere in reaching-to-grasp actions directed toward a target object in a brain-injured patient 
displaying attentional deficits (Riddoch et al., 2000).  

As far as we know, the relation between selective attention and action selection in invertebrate 
have not been investigate systematically. However the modulation of sensory processes occurring 
during the execution of specific actions have been observed in crayfish (El Manira et al, 1991), stick 
insect (Bassler and Buschges, 1998), cricket (Gebhart and Honnegger, 2001), locust (Buschges and 
Wolf, 1999) and in many other species. 

In this paper we investigate the relation between selective attention and action selection 
through a synthetic method, i.e. by evolving neuro-robots that need to engage in several activities to 
survive and reproduce. More specifically we investigate whether the availability of a top-down 
inhibitory mechanism that enable the active suppression of non-relevant stimuli support the 
development of more effective action selection capabilities.  

The results support the hypothesis that selective attention facilitates/enables action selection. In 
the next section we discuss the method and its relation with respect to the state of the art. In section 
3 we present the experimental scenario. In section 4 we present the obtained results. Finally in 
section 5 we draw our conclusions.  
 
2. Method  
 
One important consideration in modelling action selection is that in natural systems behaviours are 
not atomic elements but rather processes that emerge from the agent/environment interactions. They 
cannot be interpreted as properties or elements internal to the agent or manifestation of 
properties/mechanisms that are internal to the agent and, consequently, action selection cannot be 
considered as a process that occurs only inside the agent. In contrast with this, the majority of 
models of action selection that have been elaborated so far (including embodied models) assume 
that the units of selection consist of internal correlates of behaviours: a set of behavioural layers or 
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modules located inside the agent, possibly organized in a hierarchical manner, which are able to 
produce specific types of behaviours (Brooks, 1986; Maes, 1990; Tyrrel, 1993; Bryson, 2000; 
Montes Gonzales et al, 2000).  

In line with the approach followed by Anil Seth (1988; 2012), the model presented in this paper 
avoids this implicit assumption by using embodied and situated agents that develop their skills by 
adapting to their task/environment. The evolution process is driven by an evaluation criterion that 
does not specify the specific behaviours and behavioural skills that should be realized and selected 
and/or the way in which they should be produced and, therefore, leaves the robots free to exploit the 
properties emerging from the robot/environment interactions.  

A second important consideration concerns the dynamical and contextual nature of behaviours. 
The embodied and situated nature of behaviour implies that the actions should be flexible enough to 
achieve a specific outcome in varying conditions (e.g. a reaching behaviour should allow a robot to 
bring its hand on objects located in varying relative positions) and to be effectively combined with 
other actions (e.g. reaching and grasping behaviours should be realized in a way that enables their 
combination over time to pick up a distant object). This flexibility clearly impacts on action 
selection. More precisely, the manner in which actions are realized at a certain developmental stage 
constitutes an adaptive constraint on how actions should be selected. Conversely, the way in which 
actions are selected at a certain development stage constitutes an adaptive constraint on the manner 
in which actions should be realized. 

The use of an adaptation process in which the agents are left free to determine how action are 
realized and selected and in which these two capabilities are co-adapted allows us to take into 
account the effect of the interdependencies between action production and action selection. Indeed, 
as we will see, our results demonstrate a clear interdependence between the way in which actions 
are selected and realized.   

Another implication of the dynamical and emergent nature of behaviour is constituted by the 
lack of clear cues that can be used to partition the overall behaviour produced by an agent into a set 
of more elementary behaviours. Behaviour identification and partitioning comes as a natural 
process for a human observing a behaving agent. On the other hand, the use of human observers for 
the identification of behavioural units would clearly introduce biases caused by the external 
perspective and by individual variability. This issue touches a deep philosophical question on 
whether behaviours can be considered real entities eligible for scientific analysis or subjective 
entities that only exist in the eyes of the observed (for a synthetic discussion, see Prescott, 2008). 
This paper does not provide an answer the subjective-objective question. On the other hand the use 
of a synthetic method in which all variable and parameters are known and in which the selection 
criterion that drive the evolutionary process is formalized significantly reduces the problems caused 
by this intrinsic difficulty. Indeed it allowed us to operationalize the process through which the 
overall behaviour exhibited by the robots is divided into behavioural units. 

Finally, we will investigate whether the availability of top-down connections and of neuro-
modulatory mechanism, that can allow the robots to reduce or eliminate the processing of non-
relevant stimuli, can facilitate the acquisition of the required behavioural capacity and the 
acquisition  of the capacity to appropriately select among them. For a related connectionist model of 
negative priming and of the neurophysiological mechanisms behind attention, see Schrobsdorff, 
Ihrke, Behrendt, Hasselhom and Hermann (2012). 
 
3. The experimental setup 
  
To investigate the issues described above we have evolved neuro-robots for the capacity to survive 
and reproduce. The robots need to ingest various substances to remain alive but they have also to 
take into account what their body needs at any given time. The need to collect different food 
sources and the need to take into account the current state of their body which dynamically changes 
over time require the development of several behavioural skills as well as the ability to select the 
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right behaviour at the right time. The chosen scenario does not aim to model a specific animal 
species or environmental niche. However, it is designed so to take into account the fact that natural 
organisms: (i) are situated in rich environments containing different type of objects/resources; (ii) 
are required to display several behaviours (including mutually exclusive and/or interfering 
behaviour); (iii) are required to face different adaptive constraints (e.g., forage, save energy, avoid 
risks); (iv) are characterized by internal processes (e.g., metabolic processes) and states that co-
determine their behaviour; (v) are provided with sensors that provide egocentric, limited, and noisy 
information; (vi) are selected on the basis of how their overall behaviour corresponds to the 
adaptive constraints and not on the basis of whether they display pre-determined behaviours and/or 
on the basis of how they select among them. 
   
3.1 The robot and the environment 
  
The agents used in our experiment are simulated e-Puck robot (Mondada et al., 2009; http://www.e-
puck.org/), i.e., small circular wheeled robots provided with 8 infrared sensors uniformly distributed 
around the robot body, a VGA camera located on the frontal side of the robot, and two motors 
controlling the speed of the robot’s two wheels. The robot is situated in a square arena of 
150x150cm surrounded by walls and containing different types of food (red, green, and blue food 
elements, see Figure 1).  More precisely, the environment contains: (a) five green cylindrical 
objects (diameter 25mm) made of green edible substance, (b) one blue cylindrical object (diameter 
25mm) that disperses a blue edible substance over a nearby circular area, (c) one red cylindrical 
object (diameter 50mm) that disperses a read edible substance over the nearby area. Green objects 
contain one unit of green substance which is automatically ingested by the robot as soon as the 
distance between the robot and the object is below 3mm (green objects disappear from the 
environment once they are ingested). In addition, robots ingest 0.05 and 0.1 units of blue or red 
substance, respectively, each time step spent near the blue and red objects (i.e. within a distance of 
150mm and 60mm, respectively). The quantity of the green, blue and red substances within the 
robot body, that is initially 0.0, increases up to its maximum level of 1.0 as a consequence of 
substance ingestion, and decrease of 0.00125, 0.00125, and 0.0 each time step as a consequence of 
substance degradation over time for green, blue and red substances, respectively (i.e. the red 
substance does not degrade).  

The robot’s “stores” ingested green, blue and red substances inside its body and is provided 
with idealised internal organs that synthesize energy from the ingested food substances through a 
“metabolic” process. More precisely, for each time step in which the quantity of both green and 
blue substances overcomes a threshold of 0.5, the robot’s energy level is increased by the following 
quantity:  

Et = 0.0025 * (1 + QR)  (1) 
 
where E is the synthesized energy at time step t (i.e. during 100ms), 0.0025 is a constant, and QR is 
the current quantity of red substance. This implies that to produce energy the robot should 
periodically ingest green and blue substances and, since the availability of red substance maximize 
the energy that can be extracted from blue and green substances, the robot should ingest a 1.0 
quantity of  red substance as earlier as possible. The robot’s body and the motors of the robot 
consume energy according to the following equation: 
 

Et = - (0.0005 + 0.0015 * S)  (2) 
 
where 0.0005 is the constant amount of energy consumed at each time step t (100 ms) by the robot’s 
body to remain operational, 0.0015 is the maximum amount of energy consumed by the robot’s 
motors, and S is the average absolute speed of the two wheels normalized in the interval [0, 1]. This 
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means that the robot consumes a small fixed amount of energy and a variable amount of energy 
proportional to the speed of its motors in any time step. 

At the beginning of each trial the energy level is initialized to 0.0. After 1000 time steps in 
which the energy level remains at a null value, the robot is not allowed to move anymore for the rest 
of the trial.  

 

 
 
Figure 1. The robot and the environment. The black circle represents the robot. The black square represents the walls 
surrounding the robot’s environment. The red, green, and blue disks represent the red, green, and blue food elements, 
respectively. The red and blue dashed circles indicate the areas within which the robot absorbs the corresponding 
substances.  

 
3.2 The robot’s nervous system 
 
The nervous system of the robot is constituted by a recurrent neural network with 17 sensory 
neurons, 4 proprioceptors, 6 internal neurons, and 3 motor neurons (Figure 2). 
The sensory layer is constituted by: (i) eight infrared sensory neurons that encode the state of the 
corresponding robot’s infrared sensors, (ii) three groups of three visual sensory neurons that encode 
the percentage of red, green, and blue light detected by the camera on the left, frontal, and right 
sector of the visual field, respectively (the camera has a field of view of 36o that is divided into 
three sectors of 12o each), and (iv) four proprioceptors neurons that encode the current quantity of 
red, green, and blue substances contained in the robot body’s and the current level of robot’s 
energy. The last four neurons thus encode information related to the robot’s needs that is 
particularly relevant for action selection. The state of all sensory neurons is normalized in the range 
[0.0, 1.0]. A white noise in the range [-0.05, 0.05] is added to the activation level of the infrared and 
visual sensory neurons to take into account the variability of sensory measures in the real 
environment. The experiment has been carried out by using Evorobot* (Nolfi & Gigliotta, 2010), a 
software tool that has been successfully used to port simulation results in hardware.  

 The motor layer is constituted by two motor neurons that encode the speed of the left and right 
wheels normalized in the range [−maxs, maxs] and by one motor neuron that determines the 
maximum speed of the two wheels (maxs) in the range [0, 2π] rad/sec. In other words, the third 
neuron regulates the speed of the wheels independently from the state of the first two motor 
neurons. This design choice has been done to enable the robots to regulate their speed more easily.   

The activity of the internal and motor neurons is computed on the basis of the following 
equation: 

i
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ϑ    (3) 

with Aj being the activity of the jth neuron, ϑj the bias of the jth neuron, wij the weight from the ith 
to the jth neuron, Oi the output of the ith neuron. 
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The output of the sensory, internal, and motor neurons is set on the basis of the following three 
corresponding equations:  
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with sj being the state of the corresponding sensors normalized in the range [0.0, 1.0], τj being the 
time constant of the jth neuron (which is a parameter in the range [0.0, 1.0] in the case of internal 
neurons and a constant value set to 0.0 in the case of other neurons), Oj(t-1) being the output of the 
neuron at the previous time step, gj  being the gain of the jth neuron (which is set to the output of the 
corresponding modulatory neuron at time t-1 in the case of modulated neurons and to 1.0 in the case 
of the other neurons), and Aj being the activity of the jth neuron. 

The experiments have been replicated in different experimental conditions that vary with 
respect to the way in which neurons are connected and with respect to the presence of regulatory 
circuits (see section 4). As we will see, the architecture shown in Figure 2c facilitates the emergence 
of more effective solutions.  

 

 
 

Figure 2. The robot’s nervous system relative to the four different experimental conditions (a) A, (b) B, (c) C and (d) D 
(see section 4.1). (a) and (b): standard architecture with recurrent internal neurons. (c) and (d): architecture including a 
modulatory circuit constituted by three internal neurons that determine the gain of the 9 sensory neurons encoding 
visual information (c) or the gain of the three hiddens neurons (d). Squares represent sensors and motors. Circles 
represent neurons. Rectangle represent blocks of neurons. Solid arrows represent connections between blocks of 
neurons. The dashed arrows represent the modulatory circuits described above (i.e. the connections departing from the 
three internal neurons that reach and modulate the state of the nine visual sensory neurons in (c) or the state of the three 
internal neurons in (d)). 
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The free parameters of the robots’ neural networks (i.e. the strength of the connections, the 
biases of internal and motor neurons, and the time constants of internal neurons) are evolved (Nolfi 
and Floreano, 2000) as described in the following section.  

 
 
3.3 The evolutionary process 

 
The initial population consists of 100 randomly generated genotypes that encode the connection 
weights, the biases and time constants of 100 corresponding neural controllers (each parameter is 
encoded by 8 bits and normalized in the range [–5.0, +5.0] in the case of the connection weights and 
neurons’ biases and in the range [0.0, 1.0] in the case of neurons’ time constants). The 20 best 
genotypes of each generation are allowed to reproduce by generating 5 copies each, with 2% of 
their bits replaced with a new randomly selected value. The evolutionary process lasts 2000 
generations, i.e. the process of testing, selecting and reproducing robots is iterated 10 times. The 
evolutionary process is replicated 10 times for each experimental conditions (see section 4). 

Each robot is allowed to "live" for 20 trials of 6.6min each (4000 time steps of 100ms). The 
position and the orientation of the robot, and the position of the food elements, is randomly 
initialized at the beginning of each trial by ensuring that the distance between objects and between 
the objects and the robot is greater than 2cm. The number of green food elements is reset to five at 
the beginning of each trial. When the robot collides with an obstacle (the wall or a food element) it 
loses all its current energy and remains stacked for the rest of the trial.  

The fitness of the robot is computed by simply calculating the average level of energy of the 
robot during its entire lifetime. The fitness value thus varies in the range [0.0, 1.0]. The optimal 
value cannot be calculated due to the complexity of the scenario and the fact that the initial 
positions of the robot and of the food elements vary. However, it is certainly lower than 1.0 due to 
the time necessary to forage during the initial part of the trial and to the limited amount of available 
green substance.  

In consideration of the characteristics of the environment and of the robots’ internal 
“metabolic” processes, to maintain their energy level as high as possible the robots should develop 
and display several behaviours, presumably: (1) avoid colliding with obstacles, (2) explore the 
environment to find food sources, (3) approach a green object until the object is ingested, (4) 
approach the red object and remain near it until a sufficient quantity of red substance has been 
absorbed, (5) approach the blue object and remain near it until a sufficient quantity of blue 
substance has been absorbed, (6) avoid various types of objects when appropriate, (7) wait before 
ingesting green objects to avoid consuming all available green substance, (8) avoid wasting energy 
by producing unnecessary movements. Moreover, since part of the required behaviours are likely to 
be mutually exclusive, they should develop an ability to select the behaviour that are most 
appropriate to the current robot/environmental state.  
 
4. Results 
 
By analysing the results of several replications of the experiments we observed that in all 
experimental conditions the evolving robots develop and display multiple behaviours as well as an 
ability to select them on the basis of the robot/environmental circumstances so as to maintain their 
energy level relatively high for most of their lifetime. Overall these results confirm the validity of 
the model proposed by Seth (1988, 2012) in a more complex experimental scenario.  

The comparison of the results obtained in different experimental conditions indicates that the 
availability of a modulatory circuit that facilitates the development of selective attention capacities 
lead to better results and to qualitatively different solutions in term of both behaviour realization 
and selection. These results support the hypothesis that selective attention facilitates/enables action 
selection and that the development of action selection strategies affect the development of 
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behaviour capacities and vice versa, i.e., the hypothesis that the mechanism enabling the 
development of a more effective action selection strategy might also enable the development of 
more effective behavioural capacities, and vice versa.  

In section 4.1 we describe how performance varies quantitatively within the different 
experimental conditions. In section 4.2 we analyse the behaviour of evolved robots and how their 
behaviour varies in the different experimental conditions.  
 
4.1 Comparative results obtained in different experimental conditions 
 
The experiments have been replicated in the following four experimental conditions: 

A. The robots’ neural network includes six internal neurons that receive connections from the 
camera and proprioceptors neurons and from themselves. The motor neurons receive 
connections from all the external sensory neurons and from the internal neurons (Figure 2a). 

B. The neural controller includes six internal neurons that receive connections from all the 
external and proprioceptors neurons and from themselves. The motor neurons receive 
connections from the internal neurons only (figure 2(b)). This experimental condition has 
been included to verify whether the lack of direct sensory-motor connections, that might 
encode direct sensory-motor reflexes, is beneficial or detrimental.  

C. The network includes three internal neurons that receive connections from the camera and 
the proprioceptors neurons and from themselves and three internal neurons that receive 
connections from the proprioceptors only. The second block of three internal neurons is used 
to set the gain of the corresponding three blocks of camera sensors (see Figure 2c). The 
motor neurons receive connections from the infrared sensors and from the first block of 
internal neurons. This experimental condition has been included to verify whether a neural 
modulatory circuit that regulates the activity of camera sensors can facilitate the 
development of an early selective attention capacity that in turn can facilitates/enables the 
development of an appropriate action-selection capacity. For a related connectionist model 
of selective attention that rely on top-down inhibitory mechanism please see Schrobsdorff et 
al. (2012). 

D. The network includes three internal neurons that receive connections from the camera and 
the proprioceptors neurons and from themselves and three internal neurons that receive 
connections from the proprioceptors only. The second block of three internal neurons is used 
to set the gain of the corresponding three internal neurons of the first block. The motor 
neurons receive connections from the infrared sensors and from the first block of internal 
neurons (Figure 2(d)). This experimental condition has been introduced to compare the 
adaptive advantage of regulatory mechanisms operating on early or successive levels of 
sensory processing (experimental condition C and D respectively).  

 
In is important to notice that in principle evolving robots can solve their adaptive problem in 

any of the four experimental conditions. More specifically the presence of recurrent connections in 
the internal layers in all conditions could enable the robots to develop an effective action selection 
capability irrespectively from the presence/absence of top-down regulatory mechanisms.  

The results show that condition C, i.e., the condition in which robots are provided with a 
modulatory circuit operating at the level of the visual sensory neurons, leads to better performance 
with respect to the other three conditions. The performance achieved in the other three conditions is 
rather similar overall, although robots’ evolved in condition B display poorer fitness on the average 
(Figure 3, right).  
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Figure 3. Fitness of the best individuals of each generation in the four experimental conditions. The letter A, B, C, and 
D refer to four corresponding neural architectures described in the text above. Left : Results for the best replication of 
each experimental condition. Right: Average result of 10 replications for each experimental condition 
 
 
4.2 Behavioural analysis 
 
To disentangle the robots’ behavioural skills from the robots’ action selection skills and to analyse 
the robots’ ability to collect the food elements of different types, we post-evaluated evolved 
individuals in test conditions in which the need of substance was artificially manipulated. More 
specifically, we set the activation level of the proprioceptors neurons of the robots so as to reflect a 
situation in which one substance was completely missing while the other two substances were fully 
available and we analysed the average time required by the robots to ingest the missing substance 
(Figure 4). As shown in the Figure, performance does not vary too much between the four 
experimental conditions. More specifically, the robots evolved in condition C are the quickest in 
reaching green food elements but are slower than other robots in reaching the other two food 
elements. Overall, this analysis suggests that the higher performance of robots evolved in condition 
C is not due to a capacity to display more effective elementary foraging behaviours but rather to the 
ability to select among behaviours and/or to display better integrated behaviours.  

The variation in performance observed between food elements of different types is probably 
due to the fact that finding and reaching a green objects is easier than reaching blue and red objects 
(due to the larger number of green objects available in the environment) and to the stronger adaptive 
pressure set on the foraging of green and blue food elements than of red elements (due to the fact 
that the availability of green and blue substances constitutes a pre-requisite for generating energy). 
 

 
Figure 4. Average time  required to reach green, or blue, or red food elements in a control condition in which the 
robots’ lacked a selected substance only. The test is performed after 50s in which the robots are allowed to interact with 
the environment in normal conditions. Data averaged over 100 trials and over the best 10 evolved individuals of the 10 
corresponding replications. The four groups of histograms display the data obtained in the four experimental conditions 
(A, B, C, and D). 
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Indeed, the analysis of the foraging actions carried out by evolved robots over time (Figure 5) and 
the analysis of the way in which evolved robots arbitrate between the different behaviours on the 
basis of their current internal state (Figure 7 and 8) indicate that the robots evolved in condition C 
display better arbitration strategies than robots evolved in the other experimental conditions.  
 

 
 

Figure 5. Average number of foraging actions displayed by robots evolved in experimental condition A, B, C, and D. 
Each curve shows the average number red, green, and blue foraging actions displayed during 20 successive periods of 
200 time-steps forming trials of 4000 time-steps. Average results of the best 10 robots evolved in 10 corresponding 
replications of the experiment.   

 
Figure 6. Statistical differences between the green, red, and blue foraging actions displayed by the robots evolved in 
condition C versus the other three experimental conditions during each of the 20 successive time periods. Ticked box 
indicate the cases in which p < 0.05 according to a Mann–Whitney U test. 
 

By analysing the number foraging actions we can see how they tend to decrease over time in all 
experimental conditions (see Figure 5). This can be explained by considering that green food 
elements tend to reduce as a result of the robots’ foraging behaviour and by the fact that the robots 
might run out of energy and/or remain stacked for the rest of the trial. However, by analysing the 
number of green food elements collected over time we can see how the foraging actions decrease 
less markedly in condition C than in the other experimental conditions. In other words, C-robots 
manage to keep collecting green food elements for a longer period of time with respect to the other 
robots (Figure 5). This indicates that C-robots display a better capacity to postpone green-foraging 
actions to the phases in which the need of green substance is high thus reducing the risk to consume 
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too quickly the limited number of green food elements. Moreover, by analysing the number of time 
in which robots forage the red substances we can see how C-robots collect red food substance only 
during the first ¼ of the trial. This indicates that, unlike to the other robots, C-robots manage to 
successfully ignore the red food elements after a sufficient amount of red substance has been 
collected (see also below). As reported in Figure 6, the differences in the number red-foraging 
behaviours between condition C and the other three conditions are statistically significant from 
phase 6 to phase 16 in all phases. Similarly, the difference in the number of green-foraging 
behaviours between condition C and the other three conditions are statistically significant from 
phase 12 to phase 19 during most of the phases. 

To analyse in more details how robots select actions we segmented the behaviour produced by 
robots into a sequence of functionally different behaviours (reach food X, avoid food X, and 
wandering behaviours) and we analysed the relation between the robots’ internal state and the 
robots’ behaviour. More specifically, sequences of sensory-motor interactions in which a robot 
visually perceives a given food element and acts so as to continue to perceive the same food 
element until the robot finally reaches it are categorized as “reach food X behaviours”. Sequences 
of sensory-motor interactions in which the robot visually perceives a food X and act so as to stop 
perceiving the food after some time without reaching it are categorized as “ignore food X 
behaviours”.  

Figure 7 and 8 display the probability that each of the six reach and avoid food behaviours is 
exhibited (i.e. selected) for each possible combination of green and blue internal states. As can be 
seen, the analysis conducted on the best robot evolved in condition C (see Figure 7), indicates that it 
displays: a reach-blue behaviour in most of the circumstances in which the need of the blue 
substance exceed 0.25; a reach-green behaviour when the need of green substance is high (i.e. > 
than 0.5); and a reach-red behaviour during the initial part of the trial when the need of all 
substances is maximum. The high probability of executing any of the three foraging behaviour 
during the initial part of the trials in which the need of all substances is maximum can be explained 
by considering that in this phase the exhibition of any foraging behaviour is appropriate. 

The same analysis conducted on the best robots evolved in the other experimental conditions  
shows in general that these individuals are less capable to prioritize behaviours on the basis of their 
internal needs. For reasons of space we only display the data for the best robot evolved in the 
experimental condition A (Figure 8) but the overall pattern is similar for conditions B and D. As can 
be seen, A-robots tend to erroneously exhibit a reach-red behaviour (rather than an ignore-red 
behaviour) also when the need of green substance is high. Moreover they erroneously display an 
ignore-green and an ignore-blue behaviours also in circumstances in which the need of the two 
corresponding substances is high (i.e. near or over 0.5). 
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Figure 7: Probability of execution of the three reach-x and ignore-x behaviours in each possible combination of 
blue/green internal state. Data computed by partitioning the internal states into 21 intervals equally distributed between 
0.0 and 1.0. In each picture the vertical and horizontal axis indicate the need of blue and green substances (g, b). The 
darkness of the colour indicate the probability that the corresponding behaviour is displayed for each possible 
combination of internal states normalized between 0 (white) and 100% (black). Analysis performed on the best evolved 
individual of experimental condition C for 100 trials.   
 
 

 

 
Figure 8: Probability of execution of the three reach-x and ignore-x behaviours in each possible combination of 
blue/green internal state (see caption of Figure 5). Analysis performed on the best evolved individual of experimental 
condition A for 100 trials. 
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In addition to a better prioritization capacity, the best robot evolved in experimental condition C is 
characterized by more integrated behaviours and by a capacity to effectively regulate its action 
selection strategy over time.  

The development of better integrated behavioural capability can be appreciated by considering 
that the reach-blue behaviour in this robot is realized by approaching the blue object and then by 
keep circling around it, even when there is no more need to collect blue substance, until the need of 
green substance reach a given threshold. The reach-green behaviour is realized by approaching the 
green object and then by making a u-turn of about 180 degrees that allows the robot to face back 
toward the area from which it reached the green object. The alternation of these two behaviours 
allows the robot to move back and forth between the blue and green food elements without the need 
to explore the environment to find the blue food. Indeed, the fact that the robot prioritizes the 
foraging of the blue substance with respect to the green substance and the fact that it keeps circling 
around the blue food until it selects the reach-green behaviour implies that it systematically travels 
from the blue food element to one of the green food element. This, in turn, ensures that by moving 
toward a green food element from the blue area and by then making a u-turn the robot will orient 
back towards the blue food element. The robots evolved in the other experimental conditions do not 
shows this type of integrated behaviour (i.e. do not show the keep-circling behaviour around the 
blue food element and do not travel directly from the blue to the green food elements). 
Consequently, they cannot exploit the benefits associated with the capacities to keep the level of the 
ingested blue substance high (the level of the blue substance only decreases during the travels 
toward and backward the green food elements) and to travel directly toward the blue area even by 
distance when it can hardly be perceived.  

The integrated behaviours shown by the best robot evolved in condition C explains the diagonal 
stripe of frequencies associated to the exhibition of the reach-blue behaviour shown in Figure 7. 
Indeed, the exhibition of the integrated behaviours described above implies that the need of blue 
and green substances displayed when the robot exhibits a reach blue behaviour correlate linearly 
with the amount of blue and green food substance consumed by the robot during the travel toward 
the green food and then back toward the blue food (which in turn depends on the distance between 
the blue food and the currently selected green food).  

The capability of the best C-robot to effectively regulate the action selection strategy over time 
can be appreciated by analysing how the state of the regulatory neurons (that determine the gain of 
the red, green, and blue visual photoreceptors) varies during the first 30s of a trial in which the 
robot is situated in an environment which does not contain any food element (see Figure 9). 
Remember that at the beginning of a trial the robot lacks all the three substances.  

As shown in the Figure, the robot initially pays attention to the red and blue objects but not to 
the green objects. The attention to red food can be explained by considering that it should be 
ingested as soon as possible to maximize the amount of energy than can be later be extracted from 
geen and blue substances. The higher attention toward blue than green food can be explained by the 
fact that the blue food is more difficult to find and by the fact that the robot is able to navigate 
efficiently from blue to green food and back thanks to the integrated behaviours described above. 
The most interesting aspect however is constituted by the fact that the attention toward the red and 
green substances decreases and increase respectively over time during the first 23s of the trial. 
Increasing the attention toward the green food over time, in fact, enables the robot to reduce the risk 
of running out of energy in the attempt to first gather the red substance.  

As for the integrated behavioural capacity described above, this capacity to regulate the action 
selection process over time during phases in which the robot lacks all the three substances is 
observed only in some of the robots evolved in the experimental condition C.  
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Figure 9: Activation of the regulatory neurons (Rr, Rg, and Rb) that determine the gain of the corresponding blocks of 
red, green, and blue photoreceptors during the first 30s of a trial in which the robot is situated in an food deprived 
environment.   
 
4. Discussion and conclusion 
 
We presented a series of experiments in which embodied and situated agents are evolved for the 
ability to collect different food substances to maximize the energy that they can generate through 
their internal metabolic process. The characteristics of the robots, of the environment, and of the 
task create an adaptive pressure toward the development of several behavioural capabilities as well 
as toward the development of an ability to select among mutually exclusive behaviours. More 
precisely, the experimental setup creates the adaptive condition for the co-development of 
integrated behavioural and action selection capabilities. 

The fact that this method does not require to hand-craft the agents behavioural capabilities (i.e. 
the number of behavioural skills, the way in which behaviours are realized, and the control 
mechanisms that enable behaviour exhibition) allows us to avoid the risk to introduce in our model 
unnecessary complications and biases caused by the external perspective of the designer that might 
affect the need of specific action selection mechanisms and/or the way in which action selection 
could be realized. More specifically, this method allows us to build a model that enables the 
exploitation of behavioural and action selection capabilities that emerge from the 
agent/environmental interactions. Moreover, it allows us to avoid the misleading assumption that 
the mechanism underlying the generation of behaviours consists of internal correlates (e.g. control 
modules or layer) or the behaviours themselves and that action selection is realized by arbitrating 
between such internal units (an assumption that is often implicit in many models of action selection 
as discussed by Seth [2012]). 

Overall the obtained results confirm that, as illustrated by Seth (1988, 2012), a capacity to 
display multiple behavioural skill and to select among them (i.e. by prioritizing action selection on 
the basis of the agents internal needs, by allowing continuous behavioural sequences to be strung 
together, by exhibiting opportunism etc., Werner [1994]) can arise from the concurrent activity of 
multiple sensory-motor processes without postulating any dedicated internal arbitration mechanism. 

However, the comparison of the results obtained in the experimental conditions in which the 
robots were or were not provided with regulatory neural mechanism that facilitates the emergence 
of covert selective attention demonstrates how it enables the development of more effective action 
and action selection capabilities. Our results thus provide additional evidences in support of the 
theories that claim that one key function of selective attention is indeed to control action (Newman, 
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1987; Tipper et al, 1988; Castiello, 1999). More specifically, our finding support the affordance 
competition theory (Cisek, 2012) that claims that sensory stimuli tend to evoke directly the actions 
afforded by them and that competing or interfering evoked actions are eliminated thanks to selective 
attention mechanisms that reduce the amount of information that is transformed into action-related 
representation. The action control role of selective attention also suggests that one of the primary 
functions of internal neural connections from the motor areas to the sensory areas observed in many 
species (Webb, 2004) could be that to facilitate the selection among competing actions. 

The fact that C-robots, in which the regulatory mechanism operates at the level of the sensory 
neurons, outperform D-robots, in which the regulatory mechanism operates at the level of the 
internal neurons, suggests that the reduction of the information to be processes should occur as early 
as possible. However, further experiments should be carried out to verify the role of the other 
differences between the two experimental conditions.  

Our obtained results also demonstrate the strict interdependence between action and action 
selection capabilities. Indeed, the comparison of the best robot provided with the neural modulatory 
circuit (experimental condition C) with the best robots obtained in the other experimental conditions 
demonstrated how the former robot outperforms the other robots not only with respect to its action 
selection capability but also with respect to the way in which actions are realized and integrated. 
This result indicates that the mechanisms enabling the development of better action selection 
capabilities also create the condition for the development of better action capabilities and (possibly) 
vice versa.  

 
Acknowledgments 
 
This research has been supported by CNR under the European Science Foundation project 
Hierarchical Heterogeneous SWARM (H2Swarm). 
 
 
References 
 
Bassler U. and Buschges A. (1998). Pattern generation for stick insect walking movements. 

Multisensory control of a locomotor program. Brain Research Reviews, 27: 65-88. 
Bonfiglioli C. and Castiello, U. (1998) Dissociation of covert and overt spatial attention during 

prehension movements: selective interference effects Percept. Psychophys. 60: 1426–1440. 
Brooks R.A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics 

and Automation, 2:14-23. 
Bryson J.J. (2000). Hierarchy and sequence versus full parallelism in action selection architectures. 

In J-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, & S. W. Wilson (Eds.), From Animals to 
Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive 
Behaviour. Cambridge MA: MIT Press. 

Buschges A. and Wolf H. (1999). Phase dependent presynaptic modulation of mechanosensory 
signals in the locust flight system. Journal of Neurophysiology 81: 959-962 

Castiello U. (1996) Grasping a fruit: selection for action J. Exp. Psychol. Hum. Percept. Perform. 
22: 582–603 

Castiello U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive 
Sciences, 3 (7): 264-271. 

Chieffi, S. et al. (1993) Study of selective reaching and grasping in a patient with unilateral parietal 
lesion: dissociated effects of residual spatial neglect. Brain 116:1119-1137. 

Cisek P. (2012). Cortical mechanism of action selection: the affordance hypothesis. In A. Seth, T.J. 
Prescott, and J.J. Brysonn (Eds.). Modelling Natural Action Selection. Cambridge, U.K.: 
Cambridge University Press. 



 16

Duncan-Johnson C.C. and Koppell B.S. (1981). The Stroop effect: brain potentials localize the 
source of interference. Science 214:938-940. 

El Manira A, DiCaprio R.A, Cattaert, D., and Clarac, F. (1991). Monosynaptic interjoint reflexes 
and their central modulation during fictive locomotion in crayfish. European Journal of 
Neuroscince 3:1219-1231. 

Gebhart M. and Honnegger H.W. (2001). Physiological characterisation of antennal 
mechanosensory descending interneurons in an insect (Gryllus bimaculatus, Gryllus 
campestris) brain. Journal of Experimental Biology, 204: 2265-2275. 

Gibson J.J. (1979). The Ecological Approach to Visual Perception. Boston MA: Houghton Miffin. 
Goldberg M.E. and Segraves M.A. (1987). Visuo-spatial and motor attention in the monkey. 

Neuropsychologia, 25:107-118. 
Howard L.A and Tipper S.P. (1997) Hand deviations away from visual cues: indirect evidence for 

inhibition Exp. Brain Res, 113: 144–152. 
Jackson S.R., Jackson G.M. and Rosicky, J. (1995) Are non-relevant objects represented in working 

memory? The effect of non-target objects on reach and grasp kinematics Exp. Brain Res, 
102:519-530. 

Maes, P.(1990). Situated agents can have goals. Robotics and Autonomous Systems, 6, 49-70. 
Miller J. and Hackley S.A. (1992). Electrophysiological evidence for temporal overlap among 

contingent mental processes. J. Exp. Psychol. Gen, 121:195-209. 
Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-

C., Floreano, D. and Martinoli, A. (2009). The e-puck, a Robot Designed for Education in 
Engineering. Proceedings of the 9th Conference on Autonomous Robot Systems and 
Competitions, 1(1) pp. 59-65. 

Montes Gonzalez F., Prescott T.J., Gurney K. Humphries, M. & Redgrave, P. (2000). An embodied 
model of action selection mechanisms in the vertebrate brain. In J-A. Meyer, A. Berthoz, D. 
Floreano, H. Roitblat, & S. W. Wilson (Eds.), From Animals to Animats 6: Proceedings of the 
Sixth International Conference on Simulation of Adaptive Behaviour. Cambridge MA: MIT 
Press. 

Neumann, O. (1987) Beyond capacity: a functional view of attention. In H. Heuer, and A.F. Sanders 
(Eds.), Perspectives on Attention and Action. Erlbaum Press. 

Nolfi S. & Floreano D. (2000). Evolutionary Robotics: The Biology, Intelligence, and Technology 
of Self-Organizing Machines. Cambridge, MA: MIT Press/Bradford Books. 

Nolfi S. & Gigliotta O. (2010). Evorobot*: A tool for running experiments on the evolution of 
communication. In S. Nolfi & M. Mirolli (Eds.), Evolution of Communication and Language in 
Embodied Agents. Berlin: Springer Verlag. 

Parisi D., Petrosino G. (2010). Robots that have emotions, Adaptive Behavior, vol. 18(6), pp. 453-
469. 

Powers W. T. (1973). Feedback: Beyond behaviourism. Science, 179 (4071): 351-356. 
Prescott T. J. (2008). Action selection. Scholarpedia, 3(2):2705. 
Prescott, T. J. (2007). Forced moves or good tricks in design space? Landmarks in the evolution of 

neural mechanisms for action selection. Adaptive Behavior, 15(1), 9-31. 
Riddoch M.J., Humphreys G.W. and Edwards M.G. (2000). Visual affordances and object 

selection. In S. Monsell and J. Driver (Eds.). Attention and Performance XVIII. Cambridge, 
MA: MIT Press. 

Ruini F., Petrosino G., Saglimbeni F., Parisi D. (2010). The strategic level and the tactical level of 
behaviour, in J. Gray and S. Nefti-Meziani (eds.), Advances in cognitive systems, Herts, IET 
Publisher. 

Seth A. (1988). Evolving action selection and selective attention without action, selection, and 
attention. In R. Pfeifer, B. Blumberg, J.A. Meyer, and S. Wilson (Eds.) Proceeding of the Fifth 
International Conference on the Simulation of Adaptive Behaviour. Cambridge, MA: MIT 
Press. 



 17

Seth A. (2012). Optimized agent based modelling of action selection. In A. Seth, T.J. Prescott, and 
J.J. Brysonn (2012). Modelling Natural Action Selection. Cambridge, U.K.: Cambridge 
University Press. 

Seth A., Prescott T.J., and Brysonn J.J. (2012). Modelling Natural Action Selection. Cambridge, 
U.K.: Cambridge University Press. 

Schrobsdorff H, Ihrke M, Behrendt J., Hasselhom M. and Hermann J.M. (2012). Inhibition in the 
dynamics of selective attention: an integrative model for negative priming. Frontiers in 
Psychology, 3 (491): 1-21. 

Tipper S.P., Howard A. and Houghton G. (1998). Action-based mechanism of attention. 
Phylosophical Transactions of the Royal Society of London B, 353(1373): 1385-1393. 

Tipper S.P., Howard L.A. and Houghton G. (1998) Action-based mechanisms of attention Philos. 
Trans. R. Soc. London Ser. B: 353:1385-1393. 

Tipper S.P., Howard L.A. and Jackson, S.R. (1997) Selective reaching to grasp: evidence for 
distractor interference effects. Visual Cognition, 4: 1-38. 

Webb B. (2004). Neural mechanisms for prediction: do insects have forward models? Trends in 
Neurosciences, 27 (5): 278-282. 

Tyrrel T. (1993). The use of hierarchies for action selection. Adaptive Behaviour, 1: 387-420. 
Werner G. (1994). Using second-order neural connections for motivation of behavioural choice. In 

D. Cliff, P. Husband, J.A. Meyer, and S. Wilson (Eds). From Animals to Animats 3: 
Proceeding of the Third International Conference on the Simulation of Adaptive Behaviour. 
Cambridge, MA: MIT Press. 

 
 


