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Abstract

In this paper we investigate whether selective attention enables the development of
action selection (i.e. the ability to select among conflicting actions afforded by the
current agent/environmental context). By carrying out a series of experiments in which
neuro-robots have been evolved for the ability to forage so to maximize the energy that
can be extracted from ingested substances we observed that effective action and action
selection capacities can be developed even in the absence of internal mechanisms
specialized for action selection. However, the comparison of the results obtained in
different experimental conditions in which the robots were or were not provided with
internal modulatory connections demonstrate how selective attention enables the
development of a more effective action selection capacity and of more effective and
integrated action capacities.

1. Introduction

To survive and reproduce animals must engage inyrddferent behaviours. In some cases, the
selection of the behaviour to be currently disptagaturally follows from the state of the external
sensors encoding information about the externalremment and the internal sensors encoding
information about the organism’s needs. But in mamgumstances the internal and external
environment present animals with many opportuniéied demands for actions. For example, the
perception of water offers an opportunity to satiirst but the concurrent perception of a pradato
demands an appropriate defensive response. Aliegrattions relying on the same motor effectors
(e.g. approaching water and flying away from thedator) cannot be performed at the same time.
Thus, one fundamental capacity that organisms dhdigiplay consists in action selection (Seth,
Prescott and Bryson, 2012), i.e., the capacityetecs between alternative actions afforded by the
current organism/environmental context. In thapees, action selection should be considered as an
instance of the more general capacity of produomdfiple integrated behaviours. Action selection
can also be interpreted as motivational choice, ¢lgoosing which motivation among one’s many
different motivations should currently control osdiehaviour (Parisi and Petrosino, 2010; Ruini et
al 2012).



Although action selection and more generally actiotegration has been and is actively
studied in different disciplines (ranging from dtbgy, neurobiology and psychology to artificial
intelligence and robotics) the question of whethean be simply considered as the emergent result
of the interaction of multiple sensory-motor praess or whether it requires specialized neural
mechanisms is still controversial (Seth, 1998; €o#s2007; Seth, Prescott and Bryson, 2012).

According to many authors (Neumann, 1987;Tipperwatal, & Jackson, 1998; Castiello,
1999; Cisek, 2012) action selection is enabled ddgcsive attention: i.e. the process by which
organisms select (and process) a subset of awailafdrmation by directing their sensory organs
toward specific stimuli (overt attention) and/or ingernally focusing on one part of the available
sensory stimuli (convert attention). This hypotkeisi in line with ecological accounts (Gibson,
1979) that tend to emphasize the fact that pei@epttan flow directly into actions with little oon
intention to act (Gibson, 1979; Duncan-Johnson kopell, 1981; Goldberg and Segraves, 1987,
Miller and Hackley, 1992). For different accourtsittrather tend to emphasize the mediation role
of internal processes, such as the perceptualaiahtory (Powers, 1973), selective attention does
not necessarily represent a prerequisite for acbection.

In humans, the relation between selective attentiod action selection is supported by
experiments in which human subjects are askedaithrand grasp a target object in the presence of
distractor objects. The analysis of these experisgricate that when the attention is allocated to
an object, only the perceptual properties of tihenaled object that are relevant for the execution o
the action (i.e., its volumetric properties andsipatial properties with respect to the hand’s &#am
of reference) are computed (Howard and Tipper, 19%Fper et al, 1997; Jackson at al. 1995;
Chieffi et al. 1993; Castiello, 1996; Bonfigliolnd Castiello, 1998, Tipper et al, 1998). On the
contrary, when attention is also driven towardsrector object, the characteristics of the distrac
object interfere with those of the target objectimiy the execution of the action (Castiello, 1999).
Moreover, Riddoch and collaborators has shown thatpresence of distractor objects strongly
interfere in reaching-to-grasp actions directed alva target object in a brain-injured patient
displaying attentional deficits (Riddoch et al.0R).

As far as we know, the relation between selectit@ndon and action selection in invertebrate
have not been investigate systematically. Howelrernmhodulation of sensory processes occurring
during the execution of specific actions have baeserved in crayfish (El Manira et al, 1991), stick
insect (Bassler and Buschges, 1998), cricket (Gelaimal Honnegger, 2001), locust (Buschges and
Wolf, 1999) and in many other species.

In this paper we investigate the relation betweelective attention and action selection
through a synthetic method, i.e. by evolving neuoets that need to engage in several activities to
survive and reproduce. More specifically we invgetie whether the availability of a top-down
inhibitory mechanism that enable the active sumoes of non-relevant stimuli support the
development of more effective action selection bdpes.

The results support the hypothesis that selectiemt@on facilitates/enables action selection. In
the next section we discuss the method and itsarlavith respect to the state of the art. In secti
3 we present the experimental scenario. In sectiome present the obtained results. Finally in
section 5 we draw our conclusions.

2. Method

One important consideration in modelling actioresgbn is that in natural systems behaviours are
not atomic elements but rather processes that enfiengn the agent/environment interactions. They
cannot be interpreted as properties or elementsrnalt to the agent or manifestation of
properties/mechanisms that are internal to the taget, consequently, action selection cannot be
considered as a process that occurs only insideagleat. In contrast with this, the majority of
models of action selection that have been elabdratefar (including embodied models) assume
that the units of selection consist of internalretates of behaviours: a set of behavioural lagers



modules located inside the agent, possibly orgdniaea hierarchical manner, which are able to
produce specific types of behaviours (Brooks, 198&es, 1990; Tyrrel, 1993; Bryson, 2000;
Montes Gonzales et al, 2000).

In line with the approach followed by Anil Seth 88 2012), the model presented in this paper
avoids this implicit assumption by using embodied aituated agents that develop their skills by
adapting to their task/environment. The evolutioacpss is driven by an evaluation criterion that
does not specify the specific behaviours and belaai skills that should be realized and selected
and/or the way in which they should be produced #ratefore, leaves the robots free to exploit the
properties emerging from the robot/environmentradgons.

A second important consideration concerns the dycsrand contextual nature of behaviours.
The embodied and situated nature of behaviour esghat the actions should be flexible enough to
achieve a specific outcome in varying conditiong.(a reaching behaviour should allow a robot to
bring its hand on objects located in varying relapositions) and to be effectively combined with
other actions (e.g. reaching and grasping behavisibiould be realized in a way that enables their
combination over time to pick up a distant objedthis flexibility clearly impacts on action
selection. More precisely, the manner in whichaagiare realized at a certain developmental stage
constitutes an adaptive constraint on how actitwesilsl be selected. Conversely, the way in which
actions are selected at a certain development staggitutes an adaptive constraint on the manner
in which actions should be realized.

The use of an adaptation process in which the agastleft free to determine how action are
realized and selected and in which these two chpabiare co-adapted allows us to take into
account the effect of the interdependencies betwetan production and action selection. Indeed,
as we will see, our results demonstrate a cleardependence between the way in which actions
are selected and realized.

Another implication of the dynamical and emergeature of behaviour is constituted by the
lack of clear cues that can be used to partitienoerall behaviour produced by an agent into a set
of more elementary behaviours. Behaviour identiiica and partitioning comes as a natural
process for a human observing a behaving agenth®ather hand, the use of human observers for
the identification of behavioural units would clgaintroduce biases caused by the external
perspective and by individual variability. This ugstouches a deep philosophical question on
whether behaviours can be considered real entdiiggble for scientific analysis or subjective
entities that only exist in the eyes of the obsér{fer a synthetic discussion, see Prescott, 2008).
This paper does not provide an answer the subgectijective question. On the other hand the use
of a synthetic method in which all variable andgpaeters are known and in which the selection
criterion that drive the evolutionary process isrfalized significantly reduces the problems caused
by this intrinsic difficulty. Indeed it allowed u® operationalize the process through which the
overall behaviour exhibited by the robots is diideto behavioural units.

Finally, we will investigate whether the availatyliof top-down connections and of neuro-
modulatory mechanism, that can allow the robotsettuce or eliminate the processing of non-
relevant stimuli, can facilitate the acquisition tife required behavioural capacity and the
acquisition of the capacity to appropriately seblaoong them. For a related connectionist model of
negative priming and of the neurophysiological nagdtms behind attention, see Schrobsdorff,
Ihrke, Behrendt, Hasselhom and Hermann (2012).

3. The experimental setup

To investigate the issues described above we hadeesl neuro-robots for the capacity to survive
and reproduce. The robots need to ingest variobstances to remain alive but they have also to
take into account what their body needs at anyrngitmme. The need to collect different food
sources and the need to take into account thertistate of their body which dynamically changes
over time require the development of several behaw skills as well as the ability to select the



right behaviour at the right time. The chosen sdendoes not aim to model a specific animal
species or environmental niche. However, it isglesil so to take into account the fact that natural
organisms: (i) are situated in rich environmentstaming different type of objects/resources; (ii)
are required to display several behaviours (inclgdmutually exclusive and/or interfering
behaviour); (iii) are required to face differentagtive constraints (e.g., forage, save energy,davoi
risks); (iv) are characterized by internal procesgeg., metabolic processes) and states that co-
determine their behaviour; (v) are provided withs#s that provide egocentric, limited, and noisy
information; (vi) are selected on the basis of htheir overall behaviour corresponds to the
adaptive constraints and not on the basis of whéttey display pre-determined behaviours and/or
on the basis of how they select among them.

3.1 The robot and the environment

The agents used in our experiment are simulateack-fobot (Mondada et al., 2009tp://www.e-
puck.org), i.e., small circular wheeled robots providedha8tinfrared sensors uniformly distributed
around the robot body, a VGA camera located onfittvetal side of the robot, and two motors
controlling the speed of the robot’s two wheels.eTiobot is situated in a square arena of
150x150cm surrounded by walls and containing dffétypes of food (red, green, and blue food
elements, see Figure 1More precisely, the environment contains: (a) fiyeen cylindrical
objects (diameter 25mm) made of green edible snbstgb) one blue cylindrical object (diameter
25mm) that disperses a blue edible substance oweagby circular area, (c) one red cylindrical
object (diameter 50mm) that disperses a read ediddstance over the nearby area. Green objects
contain one unit of green substance which is autically ingested by the robot as soon as the
distance between the robot and the object is beéawn (green objects disappear from the
environment once they are ingested). In additiobots ingest 0.05 and 0.1 units of blue or red
substance, respectively, each time step spenttinednlue and red objects (i.e. within a distance of
150mm and 60mm, respectively). The quantity of gheen, blue and red substances within the
robot body, that is initially 0.0, increases upit® maximum level of 1.0 as a consequence of
substance ingestion, and decrease of 0.00125, Zb60@hd 0.0 each time step as a consequence of
substance degradation over time for green, blue raddsubstances, respectively (i.e. the red
substance does not degrade).

The robot’s “stores” ingested green, blue and rgdostances inside its body and is provided
with idealised internal organs that synthesize ggnénom the ingested food substances through a
“metabolic” process. More precisely, for each tistep in which the quantity of both green and
blue substances overcomes a threshold of 0.5pthw’s energy level is increased by the following
guantity:

E;=0.0025* (1 + QR) (1)

where E is the synthesized energy at time step.tduring 100ms), 0.0025 is a constant, and QR is
the current quantity of red substance. This implieat to produce energy the robot should

periodically ingest green and blue substances sinde the availability of red substance maximize

the energy that can be extracted from blue andngsedstances, the robot should ingest a 1.0
quantity of red substance as earlier as possilile. robot’'s body and the motors of the robot

consume energy according to the following equation:

E: = - (0.0005 + 0.0015 * S) )
where 0.0005 is the constant amount of energy coedwat each time step t (100 ms) by the robot’s

body to remain operational, 0.0015 is the maximunoant of energy consumed by the robot’s
motors, and S is the average absolute speed tivthe’heels normalized in the interval [0, 1]. This



means that the robot consumes a small fixed amoluahergy and a variable amount of energy
proportional to the speed of its motors in any tstep.

At the beginning of each trial the energy leveingialized to 0.0. After 1000 time steps in
which the energy level remains at a null value,rtimt is not allowed to move anymore for the rest
of the trial.

Figure 1. The robot and the environment. The black cireleresents the robot. The black square representséilis
surrounding the robot’s environment. The red, greew blue disks represent the red, green, andfbad elements,
respectively. The red and blue dashed circles @&tdiche areas within which the robot absorbs theesponding
substances.

3.2 The robot’s nervous system

The nervous system of the robot is constituted beaurrent neural network with 17 sensory
neurons, 4 proprioceptors, 6 internal neurons,3ambtor neurons (Figure 2).

The sensory layer is constituted by: (i) eightandd sensory neurons that encode the state of the
corresponding robot’s infrared sensors, (ii) thgesups of three visual sensory neurons that encode
the percentage of red, green, and blue light dedeby the camera on the left, frontal, and right
sector of the visual field, respectively (the cambas a field of view of 3ahat is divided into
three sectors of £2ach), and (iv) four proprioceptors neurons tmaibee the current quantity of
red, green, and blue substances contained in thet fwody’'s and the current level of robot’s
energy. The last four neurorthus encode information related to the robot's seétat is
particularly relevant for action selection. Thetstaf all sensory neurons is normalized in the eang
[0.0, 1.0]. A white noise in the range [-0.05, Q.B5added to the activation level of the infrasedl
visual sensory neurons to take into account thealb#ity of sensory measures in the real
environment. The experiment has been carried owutsbyg Evorobot* (Nolfi & Gigliotta, 2010), a
software tool that has been successfully used iospaulation results in hardware.

The motor layer is constituted by two motor negrtmat encode the speed of the left and right
wheels normalized in the range [-maxs, maxs] andotiy motor neuron that determines the
maximum speed of the two wheels (maxs) in the rgAger| rad/sec. In other words, the third
neuron regulates the speed of the wheels indepndeom the state of the first two motor
neurons. This design choice has been done to etrebtebots to regulate their speed more easily.

The activity of the internal and motor neurons @nputed on the basis of the following
equation:

N
A =9, +Z\Nijc>i 3)
i,j=1
with Aj being the activity of thgth neurongj the bias of thgth neuronw; the weight from théth
to thejth neuronQi the output of théth neuron.



The output of the sensory, internal, and motor oresitis set on the basistbie following three
corresponding equations:

O =59 )
Oy =(7,0)yy + L-T)(A+e ")) g ()
O, =@+e™)"g, ©6)

with § being the state of the corresponding sensors riaedan the range [0.0, 1.04 being the
time constant of thgh neuron (which is a parameter in the range [0.0] in the case of internal
neurons and a constant value set to 0.0 in the afagther neurons);t.1) being the output of the
neuron at the previous time stgppeing the gain of thgh neuron (which is set to the output of the
corresponding modulatory neuron at time t-1 indgase of modulated neurons and to 1.0 in the case
of the other neurons), ag being the activity of thgh neuron.

The experiments have been replicated in differeqegmental conditions that vary with
respect to the way in which neurons are conneateldvath respect to the presence of regulatory

circuits (see section 4). As we will see, the assdture shown in Figure 2c facilitates the emergenc
of more effective solutions.
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Figure 2. The robot’s nervous system relative to the fatferent experimental conditions (a) A, (b) B, €)and (d) D
(see section 4.1). (a) and (b): standard architecstith recurrent internal neurons. (¢) and (d¢héecture including a
modulatory circuit constituted by three internaurens that determine the gain of the 9 sensoryamsuencoding
visual information (c) or the gain of the three déds neurons (d). Squares represent sensors amism@ircles
represent neurons. Rectangle represent blocks wong Solid arrows represent connections betwdeok® of
neurons. The dashed arrows represent the moduleitonits described above (i.e. the connectionsadém from the

three internal neurons that reach and modulatsttte of the nine visual sensory neurons in (¢herstate of the three
internal neurons in (d)).



The free parameters of the robots’ neural netwdrks the strength of the connections, the
biases of internal and motor neurons, and the tiomstants of internal neurons) are evolved (Nolfi
and Floreano, 2000) as described in the followswien.

3.3 The evolutionary process

The initial population consists of 100 randomly gexted genotypes that encode the connection
weights, the biases and time constants of 100 sporeling neural controllers (each parameter is
encoded by 8 bits and normalized in the range [-5®] in the case of the connection weights and
neurons’ biases and in the range [0.0, 1.0] indhse of neurons’ time constants). The 20 best
genotypes of each generation are allowed to repediy generating 5 copies each, with 2% of
their bits replaced with a new randomly selectetuaiaThe evolutionary process lasts 2000
generations, i.e. the process of testing, sele@md reproducing robots is iterated 10 times. The
evolutionary process is replicated 10 times fohea@erimental conditions (see section 4).

Each robot is allowed to "live" for 20 trials ofeénin each (4000 time steps of 100ms). The
position and the orientation of the robot, and pasition of the food elements, is randomly
initialized at the beginning of each trial by ensgrthat the distance between objects and between
the objects and the robot is greater than 2cm.nlimeber of green food elements is reset to five at
the beginning of each trial. When the robot coBisgth an obstacle (the wall or a food element) it
loses all its current energy and remains stackethéorest of the trial.

The fitness of the robot is computed by simply gldting the average level of energy of the
robot during its entire lifetime. The fitness valtieis varies in the range [0.0, 1.0]. The optimal
value cannot be calculated due to the complexityhef scenario and the fact that the initial
positions of the robot and of the food elementy.velbwever, it is certainly lower than 1.0 due to
the time necessary to forage during the initiat pathe trial and to the limited amount of avallab
green substance.

In consideration of the characteristics of the emwnent and of the robots’ internal
“metabolic” processes, to maintain their energyeleas high as possible the robots should develop
and display several behaviours, presumably: (1)dacolliding with obstacles, (2) explore the
environment to find food sources, (3) approach eegrobject until the object is ingested, (4)
approach the red object and remain near it unsufficient quantity of red substance has been
absorbed, (5) approach the blue object and remear it until a sufficient quantity of blue
substance has been absorbed, (6) avoid various tfpebjects when appropriat@,) wait before
ingesting green objects to avoid consuming alllatsée green substand@) avoid wasting energy
by producing unnecessary movements. Moreover, siadeof the required behaviours are likely to
be mutually exclusive, they should develop an Bbito select the behaviour that are most
appropriate to the current robot/environmentakstat

4. Results

By analysing the results of several replicationstloé experiments we observed that in all
experimental conditions the evolving robots devedog display multiple behaviours as well as an
ability to select them on the basis of the robatitemmental circumstances so as to maintain their
energy level relatively high for most of their lifme. Overall these results confirm the validity of
the model proposed by Seth (1988, 2012) in a mamgtex experimental scenario.

The comparison of the results obtained in diffexperimental conditions indicates that the
availability of a modulatory circuit that facilieed the development of selective attention capacitie
lead to better results and to qualitatively différgolutions in term of both behaviour realization
and selection. These results support the hypotliesisselective attention facilitates/enables actio
selection and that the development of action delecstrategies affect the development of



behaviour capacities and vice versa, i.e., the tmgsis that the mechanism enabling the
development of a more effective action selectioatsgy might also enable the development of
more effective behavioural capacities, and vicesaer

In section 4.1 we describe how performance variaantitatively within the different
experimental conditions. In section 4.2 we analyebehaviour of evolved robots and how their
behaviour varies in the different experimental ¢bods.

4.1 Comparative results obtained in different expemental conditions

The experiments have been replicated in the foligiour experimental conditions:

A. The robots’ neural network includes six internalurons that receive connections from the
camera and proprioceptors neurons and from theeselVhe motor neurons receive
connections from all the external sensory neuraowisfeom the internal neurons (Figure 2a).

B. The neural controller includes six internal rang that receive connections from all the
external and proprioceptors neurons and from thkemse The motor neurons receive
connections from the internal neurons only (fig(b)). This experimental condition has
been included to verify whether the lack of direensory-motor connections, that might
encode direct sensory-motor reflexes, is benefaiaetrimental.

C. The network includes three internal neurons teetive connections from the camera and
the proprioceptors neurons and from themselvestharek internal neurons that receive
connections from the proprioceptors only. The sddaock of three internal neurons is used
to set the gain of the corresponding three blodksamera sensors (see Figure 2c). The
motor neurons receive connections from the infraedsors and from the first block of
internal neurons. This experimental condition hasrbincluded to verify whether a neural
modulatory circuit that regulates the activity o@ntera sensors can facilitate the
development of an early selective attention capdbit in turn can facilitates/enables the
development of an appropriate action-selection afpaFor a related connectionist model
of selective attention that rely on top-down intoby mechanism please see Schrobsdorff et
al. (2012).

D. The network includes three internal neurons teakive connections from the camera and
the proprioceptors neurons and from themselvestarek internal neurons that receive
connections from the proprioceptors only. The sddadock of three internal neurons is used
to set the gain of the corresponding three intensalrons of the first block. The motor
neurons receive connections from the infrared gsnand from the first block of internal
neurons (Figure 2(d)). This experimental condititas been introduced to compare the
adaptive advantage of regulatory mechanisms opgrath early or successive levels of
sensory processing (experimental condition C amddpectively).

In is important to notice that in principle evolgimobots can solve their adaptive problem in
any of the four experimental conditions. More speaily the presence of recurrent connections in
the internal layers in all conditions could enatble robots to develop an effective action selection
capability irrespectively from the presence/absaidep-down regulatory mechanisms.

The results show that condition C, i.e., the caaditn which robots are provided with a
modulatory circuit operating at the level of theual sensory neurons, leads to better performance
with respect to the other three conditions. Thégoerance achieved in the other three conditions is
rather similar overall, although robots’ evolvedcondition B display poorer fithess on the average
(Figure 3, right).
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Figure 3. Fitness of the best individuals of each genenaticthe four experimental conditions. The letterBA C, and
D refer to four corresponding neural architectutescribed in the text aboveeft: Results for the best replication of
each experimental conditioRight: Average result of 10 replications for each experital condition

4.2 Behavioural analysis

To disentangle the robots’ behavioural skills frire robots’ action selection skills and to analyse
the robots’ ability to collect the food elements different types, we post-evaluated evolved
individuals in test conditions in which the needsnibstance was artificially manipulated. More
specifically, we set the activation level of the@gtoceptors neurons of the robots so as to reflect
situation in which one substance was completelsimgswhile the other two substances were fully
available and we analysed the average time reqbiyetie robots to ingest the missing substance
(Figure 4). As shown in the Figure, performance sdoet vary too much between the four
experimental conditions. More specifically, the atsdevolved in condition C are the quickest in
reaching green food elements but are slower thheratbots in reaching the other two food
elements. Overall, this analysis suggests thahitjiger performance of robots evolved in condition
C is not due to a capacity to display more effeceélementary foraging behaviours but rather to the
ability to select among behaviours and/or to digpletter integrated behaviours.

The variation in performance observed between felethents of different types is probably
due to the fact that finding and reaching a gregeats is easier than reaching blue and red objects
(due to the larger number of green objects avalabthe environment) and to the stronger adaptive
pressure set on the foraging of green and blue &ewchents than of red elements (due to the fact
that the availability of green and blue substamoesstitutes a pre-requisite for generating energy).

Proprioceptor's level

Ogreen =0, blue = 1, red = 1
mEoreen =1, blue =0, red = 1
ogreen =1, blue =1, red = 0

Figure 4. Average time required to reach green, or bluered food elements in a control condition in whibie

robots’ lacked a selected substance only. Thasgmstrformed after 50s in which the robots arevedid to interact with
the environment in normal conditions. Data averapeetr 100 trials and over the best 10 evolved iddizls of the 10
corresponding replications. The four groups ofdgisams display the data obtained in the four erpemtal conditions
(A, B, C, and D).
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Indeed, the analysis of the foraging actions cdraet by evolved robots over time (Figure 5) and
the analysis of the way in which evolved robotsiteate between the different behaviours on the
basis of their current internal state (Figure 7 8phéhdicate that the robots evolved in condition C
display better arbitration strategies than robgtdwed in the other experimental conditions.
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Figure 5. Average number of foraging actions displayed diyots evolved in experimental condition A, B, Cddn.
Each curve shows the average number red, greerhlaedoraging actions displayed during 20 suceesperiods of
200 time-steps forming trials of 4000 time-stepserage results of the best 10 robots evolved ircd@esponding
replications of the experiment.
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Figure 6. Statistical differences between the green, red, ldue foraging actions displayed by the robotshaad in
condition C versus the other three experimentaditmms during each of the 20 successive time paridicked box
indicate the cases in which p < 0.05 accordingttaan—Whitney U test.

By analysing the number foraging actions we canhssethey tend to decrease over time in all
experimental conditions (see Figure 5). This canekplained by considering that green food
elements tend to reduce as a result of the rolmizging behaviour and by the fact that the robots
might run out of energy and/or remain stacked ffer test of the trial. However, by analysing the
number of green food elements collected over tirecan see how the foraging actions decrease
less markedly in condition C than in the other expental conditions. In other words, C-robots
manage to keep collecting green food elements fonger period of time with respect to the other
robots (Figure 5). This indicates that C-robotgldig a better capacity to postpone green-foraging
actions to the phases in which the need of grebkstance is high thus reducing the risk to consume
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too quickly the limited number of green food eletsemMoreover, by analysing the number of time
in which robots forage the red substances we carmg® C-robots collect red food substance only
during the first % of the trial. This indicates thanlike to the other robots, C-robots manage to
successfully ignore the red food elements afteufficeent amount of red substance has been
collected (see also below). As reported in Figureéheé differences in the number red-foraging
behaviours between condition C and the other thewlitions are statistically significant from

phase 6 to phase 16 in all phases. Similarly, tifference in the number of green-foraging
behaviours between condition C and the other thewlitions are statistically significant from

phase 12 to phase 19 during most of the phases.

To analyse in more details how robots select astisa segmented the behaviour produced by
robots into a sequence of functionally differenhdeéours (reach food X, avoid food X, and
wandering behaviours) and we analysed the reldtemveen the robots’ internal state and the
robots’ behaviour. More specifically, sequencessehsory-motor interactions in which a robot
visually perceives a given food element and actasdo continue to perceive the same food
element until the robot finally reaches it are gatezed as “reach food X behaviours”. Sequences
of sensory-motor interactions in which the robauwally perceives a food X and act so as to stop
perceiving the food after some time without reaghih are categorized as “ignore food X
behaviours”.

Figure 7 and 8 display the probability that eachhef six reach and avoid food behaviours is
exhibited (i.e. selected) for each possible contlmnaof green and blue internal states. As can be
seen, the analysis conducted on the best robotexvah condition C (see Figurg, indicates that it
displays: a reach-blue behaviour in most of theurirstances in which the need of the blue
substance exceed 0.25; a reach-green behaviour thkeneed of green substance is high (i.e. >
than 0.5); and a reach-red behaviour during thgainpart of the trial when the need of all
substances is maximum. The high probability of edaeg any of the three foraging behaviour
during the initial part of the trials in which timeed of all substances is maximum can be explained
by considering that in this phase the exhibitiomiwy foraging behaviour is appropriate.

The same analysis conducted on the best robotsezl/ah the other experimental conditions
shows in general that these individuals are lepalda to prioritize behaviours on the basis ofrthei
internal needs. For reasons of space we only gigpla data for the best robot evolved in the
experimental condition A (Figure 8) but the ovettern is similar for conditions B and D. As can
be seen, A-robots tend to erroneously exhibit &lread behaviour (rather than an ignore-red
behaviour) also when the need of green substanbggls Moreover they erroneously display an
ignore-green and an ignore-blue behaviours alsoirsumstances in which the need of the two
corresponding substances is high (i.e. near or @&r
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Figure 7: Probability of execution of the three reach-x dgdore-x behaviours in each possible combination of
blue/green internal state. Data computed by paiitig the internal states into 21 intervals equdistributed between
0.0 and 1.0. In each picture the vertical and loorial axis indicate the need of blue and greentanbss (g, b). The
darkness of the colour indicate the probabilitytthize corresponding behaviour is displayed for epolsible
combination of internal states normalized betwedwltite) and 100% (black). Analysis performed oe kest evolved
individual of experimental condition C for 100 tsa
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blue/green internal state (see caption of FigureABalysis performed on the best evolved individofakxperimental
condition A for 100 trials.
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In addition to a better prioritization capacitygthest robot evolved in experimental condition C is
characterized by more integrated behaviours ana logpacity to effectively regulate its action
selection strategy over time.

The development of better integrated behaviournphlbogity can be appreciated by considering
that the reach-blue behaviour in this robot isizeal by approaching the blue object and then by
keep circling around it, even when there is no nmaed to collect blue substance, until the need of
green substance reach a given threshold. The graen-behaviour is realized by approaching the
green object and then by making a u-turn of ab&@ degrees that allows the robot to face back
toward the area from which it reached the greeratbjThe alternation of these two behaviours
allows the robot to move back and forth betweerbthe and green food elements without the need
to explore the environment to find the blue fooddded, the fact that the robot prioritizes the
foraging of the blue substance with respect togileen substance and the fact that it keeps circling
around the blue food until it selects the reaclegreehaviour implies that it systematically travels
from the blue food element to one of the green felednent. This, in turn, ensures that by moving
toward a green food element from the blue areabgnthen making a u-turn the robot will orient
back towards the blue food element. The robotsvexbin the other experimental conditions do not
shows this type of integrated behaviour (i.e. do stow the keep-circling behaviour around the
blue food element and do not travel directly froire tblue to the green food elements).
Consequently, they cannot exploit the benefits @ated with the capacities to keep the level of the
ingested blue substance high (the level of the blulestance only decreases during the travels
toward and backward the green food elements) anichtel directly toward the blue area even by
distance when it can hardly be perceived.

The integrated behaviours shown by the best rolomved in condition C explains the diagonal
stripe of frequencies associated to the exhibitbthe reach-blue behaviour shown in Figure 7.
Indeed, the exhibition of the integrated behavialgscribed above implies that the need of blue
and green substances displayed when the robotiexhitreach blue behaviour correlate linearly
with the amount of blue and green food substanoswoed by the robot during the travel toward
the green food and then back toward the blue faddch in turn depends on the distance between
the blue food and the currently selected green)food

The capability of the best C-robot to effectivedgulate the action selection strategy over time
can be appreciated by analysing how the stateeofeulatory neurons (that determine the gain of
the red, green, and blue visual photoreceptorsgvaturing the first 30s of a trial in which the
robot is situated in an environment which does cmttain any food element (see Figure 9).
Remember that at the beginning of a trial the rddcks all the three substances.

As shown in the Figure, the robot initially payseation to the red and blue objects but not to
the green objects. The attention to red food carexygained by considering that it should be
ingested as soon as possible to maximize the anudlertergy than can be later be extracted from
geen and blue substances. The higher attentiorrddvhae than green food can be explained by the
fact that the blue food is more difficult to finchéa by the fact that the robot is able to navigate
efficiently from blue to green food and back thaméighe integrated behaviours described above.
The most interesting aspect however is constitbiethe fact that the attention toward the red and
green substances decreases and increase respeotreeltime during the first 23s of the trial.
Increasing the attention toward the green food @weg, in fact, enables the robot to reduce the ris
of running out of energy in the attempt to firstiga the red substance.

As for the integrated behavioural capacity descridleove, this capacity to regulate the action
selection process over time during phases in whhehrobot lacks all the three substances is
observed only in some of the robots evolved inetkgerimental condition C.
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Figure 9: Activation of the regulatory neurons (Rr, Rg, dRid) that determine the gain of the correspondiogks of
red, green, and blue photoreceptors during thé 3ids of a trial in which the robot is situatedan food deprived
environment.

4. Discussion and conclusion

We presented a series of experiments in which emmbaahd situated agents are evolved for the
ability to collect different food substances to nmaize the energy that they can generate through
their internal metabolic process. The charactesstif the robots, of the environment, and of the
task create an adaptive pressure toward the dewvelupof several behavioural capabilities as well
as toward the development of an ability to selenbrg mutually exclusive behaviours. More
precisely, the experimental setup creates the m@amondition for the co-development of
integrated behavioural and action selection cajpiaisil

The fact that this method does not require to haatt-the agents behavioural capabilities (i.e.
the number of behavioural skills, the way in whibbBhaviours are realized, and the control
mechanisms that enable behaviour exhibition) allas/$o avoid the risk to introduce in our model
unnecessary complications and biases caused lextbmal perspective of the designer that might
affect the need of specific action selection metdms and/or the way in which action selection
could be realized. More specifically, this methdtbwas us to build a model that enables the
exploitation of behavioural and action selection patalities that emerge from the
agent/environmental interactions. Moreover, it\alous to avoid the misleading assumption that
the mechanism underlying the generation of behasiocansists of internal correlates (e.g. control
modules or layer) or the behaviours themselvesthataction selection is realized by arbitrating
between such internal units (an assumption thattés implicit in many models of action selection
as discussed by Seth [2012]).

Overall the obtained results confirm that, as tHated by Seth (1988, 2012), a capacity to
display multiple behavioural skill and to selectarg them (i.e. by prioritizing action selection on
the basis of the agents internal needs, by alloworginuous behavioural sequences to be strung
together, by exhibiting opportunism etc., Werne394]) can arise from the concurrent activity of
multiple sensory-motor processes without postulgdiny dedicated internal arbitration mechanism.

However, the comparison of the results obtainethénexperimental conditions in which the
robots were or were not provided with regulatorynaé mechanism that facilitates the emergence
of covert selective attention demonstrates howabées the development of more effective action
and action selection capabilities. Our results thusvide additional evidences in support of the
theories that claim that one key function of sélecattention is indeed to control action (Newman,
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1987; Tipper et al, 1988; Castiello, 1999). Moregafically, our finding support the affordance
competition theory (Cisek, 2012) that claims thexisory stimuli tend to evoke directly the actions
afforded by them and that competing or interfeengked actions are eliminated thanks to selective
attention mechanisms that reduce the amount ofrirdtion that is transformed into action-related
representation. The action control role of selecattention also suggests that one of the primary
functions of internal neural connections from theton areas to the sensory areas observed in many
species (Webb, 2004) could be that to facilitaeesblection among competing actions.

The fact that C-robots, in which the regulatory heedsm operates at the level of the sensory
neurons, outperform D-robots, in which the regulatmechanism operates at the level of the
internal neurons, suggests that the reductioneofrtformation to be processes should occur as early
as possible. However, further experiments shoulccdreed out to verify the role of the other
differences between the two experimental conditions

Our obtained results also demonstrate the strierdependence between action and action
selection capabilities. Indeed, the comparisorhefliest robot provided with the neural modulatory
circuit (experimental condition C) with the besbots obtained in the other experimental conditions
demonstrated how the former robot outperforms therarobots not only with respect to its action
selection capability but also with respect to theyvin which actions are realized and integrated.
This result indicates that the mechanisms enaliimey development of better action selection
capabilities also create the condition for the tlgwment of better action capabilities and (possibly
vice versa.
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