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A robotic model of reaching
and grasping development

Piero Savastano and Stefano Nolfi

Abstract—We present a neurorobotic model that develops
reaching and grasping skills analogous to those displayed by
infants during their early developmental stages. The learning
process is realized in an incremental manner, taking into account
the reflex behaviors initially possessed by infants and the neu-
rophysiological and cognitive maturation occurring during the
relevant developmental period. The behavioral skills acquired by
the robots closely match those displayed by children. The com-
parison between incremental and non-incremental experiments
demonstrates how some of the limitations characterizing the
initial developmental phase channel the learning process toward
better solutions.

Index Terms—reaching, grasping, developmental robotics, hu-
manoid, incremental learning.

I. INTRODUCTION

MODERN theories of motor development assume that the
child’s interaction with the environment plays a crucial

role and that learning can be characterized as an exploratory
process involving variation and selection of behavioral strate-
gies and the discovery of affordances [1], [2], [3], [4], [5], [6],
[7], channeled by maturational and developmental constraints
[8], [9], [10]. Modeling this developmental processes requires
the use of embodied and situated agents that acquire their
skills while interacting with an external environment [11].
The agents engage in a strategic learning process to discover
and adopt different ways of achieving the desired states,
experiencing at the same time a vast array of physiological
maturations leading the exploratory process toward promising
directions.
We aim to demonstrate how a developmental process of this
type can be realized in the context of a well-defined behavioral
capacity: the development of reaching and grasping behaviors
in infants from 2 to 18 months of age. During this period
infants display a transition from sweeping and unsuccess-
ful arm movements toward primitive imprecise reaching and
grasping behaviors and then a second transition leading toward
integrated and effective reaching and grasping behaviors [12],
[13], [14], [15], [16].
The development of reaching and grasping behaviors in infants
constitutes one of the most deeply studied areas of motor
control, for which a large amount of empirical data is available
(see section Incremental Training). An additional interest to
the topic stems from the field of robotics, where the design
of robots able to develop human-like reaching and grasping
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skills represents an open challenge [17] and a necessary step
in order to emulate higher cognitive processes [18], [19]. A
historically important quest is to understand the control of
several interdependent degrees of freedom (DOFs) [20], thus
overcoming the redundancy of the system (i.e. there is an
infinite number of trajectories and postures to reach a given
target position).
The main aim of this study is to provide a neurorobotic model
able to acquire reaching and grasping capabilities analogous
to those displayed by infants from 2 to 18 months of age that
integrates into a single framework a large set of the empirical
observations reported in the literature. The model should be
able to reproduce the qualitative changes occurring during
successive developmental phases such as the emergence of
motor babbling behaviour [7], [15], [21], [22], the freezing and
then defreezing of the distal DOFs [23], [24], the integration of
multimodal information [25], and overall the nonlinear pattern
of skills acquisition that characterizes child development [16],
[26], [27]. This model allows us to study the role of the
maturational constraints [10] (i.e. modifications affecting the
architecture of the robot’s neural controller and the robot’s
perceptual capacities) on the behavioral skills developed by
the robot. This has been realized by carrying out and analyzing
a series of comparative experiments, which could not be
performed on humans, in which the maturational constraints
have been systematically manipulated. The experiments and
analysis reported extend significantly previous related studies
[2], [28], [29] with respect, in particular, to the temporal
extension of the developmental period studied and to the
amount of empirical data taken into consideration.

II. THEORETICAL ASSUMPTIONS

Our aim is to build a psychologically accurate model
displaying behavior analogous to that shown by infants during
their early developmental stages. We intend to design the
simplest possible model that incorporates all the aspects that
play a key causal role for the production of human-like
behavior and abstracts from all the other characteristics. In
the chosen domain, we hypothesize that the following aspects
and modeling choices constitute essential prerequisites:

A. Embodiment.

The morphological and sensory-motor characteristics of the
agent play an essential role in adaptive behavior [11]. For this
reason we carry out our experiments by using a humanoid
robot (the iCub) that matches to a good extent the charac-
teristics of human infants in term of morphology, kinematic
structure, and DOFs. Moreover, we design the sensory-motor
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Fig. 1: The simulated setting (Left) is derived from experi-
ments carried out on infants (Center and Right) reported in
[16] and [30].

system of the robot by taking into account the empirical data
regarding infants’ maturation/development.

B. Situatedness.
Behavior is not only the result of the agent’s characteristics

but also of the interactions between the agent and the envi-
ronment. This aspect is accounted for in our experiments by
simulating the characteristics of the physical environment and
of the robot/environmental interaction in detail, and by using a
learning process and a control architecture that allow the robot
to exploit sensory-motor coordination and more generally
properties emerging from the agent/environmental interaction.
Finally, we replicated as much as possible the characteristics
of the experimental settings in which the behavior of infants
was studied [16], [30], see Fig. 1. This allowed us to generate
data more easily comparable with experimental data, and to
produce testable predictions for infant motor learning.

C. Nervous system and learning process.
Here we refer to the formalism used to specify the agent’s

nervous system (or robot’s controller) and the way in which
it adapts. In the context of infant reach/grasp development
modeling addressed in this paper, we implement the robot’s
controller with an artificial neural network and the learning
process through a simple trial and error learning algorithm that
is driven by the observed consequences of the robot’s action
(visual and tactile feedback). The neuromimetic controller
is not intended to reproduce the detailed characteristics of
the nervous system (at the level of the single neurons or at
the level of the nervous system architecture) but to capture
its essential features. More specifically, the fact that neural
networks encode and process quantitative information, operate
over time, display generalization properties, and constitute
a suitable and biologically plausible medium for learning
[31]. The learning algorithm driven by distal somatosensory
feedback complies with empirical evidence suggesting that
young infants acquire reaching and grasping skills through a
self-learning trial and error process [7] rather than by imitation
learning [28], [32]. For the same reason, in contrast with
models of adult and skilled movement [33], [34], we do not
assume learning of explicit forward or inverse models.

D. Incrementality.
The fourth and last key aspect is constituted by the in-

cremental nature of the developmental process. Action de-
velopment in newborn infants does not start from scratch,
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Fig. 2: The thick line in the three pictures shows the portion of
the spherical surface in which the ball can be placed. To ensure
a good spatial distribution over space of the target objects, the
surface is virtually divided into 9 sectors.

as it is strongly influenced by pre-existing behavioral skills
and by concurrent maturational processes. For this reason
we provide the robots with two simple reflexes homologous
to some of the reflexes initially possessed by infants: an
orienting response [35] and a grasp reflex [36]. Moreover, we
model the developmental process in a series of cumulative
phases subjected to physiological modifications originating
from tissues maturation [10] and cognitive modifications (e.g.
increased ability to process visual information [37]).

III. METHOD AND RELATION TO THE STATE OF THE ART

A simulated iCub robot [38] is trained for the ability to
reach and grasp a colored ball located in its peripersonal
space. The experimental scenario in which we train the robot
is derived from the experiments done with children of about
4 months of age by Spencer and Thelen [16] and von Hofsten
[30] (see Fig. 1). The robot is suspended vertically over a
stick attached to the pelvis. In each trial the ball is placed in
a randomly selected point located within one of 9 sectors of
the spherical surface centered on the iCub’s neck (Fig. 2).
The ball is attached to a pendulum. The robot is provided
with a neural controller that is trained through an incremental
trial and error process (see Learning Process).

A. The Robot

The iCub is a humanoid robot developed at IIT as part
of the EU project RobotCub [38], [39]. It has 53 motors
that move the head, arms and hands, waist, and legs. From
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Fig. 3: The architecture of the robot’s neural controller. Num-
bers between parentheses represent the number of neurons, ar-
rows indicate connections. Full arrows indicate hand-designed
connection weights used to implement motor reflexes. Dashed
thin and thick arrows indicate connection subjected to variation
during the first and the second training phases, respectively.
The incoming and outgoing connections of the internal neu-
rons are initially set to 0.0 and adapted from the second
training phase only. Notice that dashed arrows pointing to the
motor layer indicate connections toward all motor neurons.

the sensory point of view, the iCub is equipped with dig-
ital cameras, gyroscopes and accelerometers, microphones,
force/torque sensors, tactile sensors. In the experiment reported
in this paper, the sensors and actuators located on the left
arm and on the legs have not been used. The experiments
have been carried out through an open software tool available
from http://laral.istc.cnr.it/farsa. The simulator included in this
tool reproduces as accurately as possible the physics and the
dynamics of the robot and robot/environment interaction, and
is based on the Newton Game Dynamics open-source physics
engine (http://newtondynamics.com).

B. The Robot’s Neural Controller and Sensory-motor System

The robot’s neural controller is constituted by a recurrent
neural network that receives proprioceptive input from the
right arm, torso, and head, exteroceptive input from the
cameras located in the robot eyes and from the tactile sensors
located on the right hand, and controls the motors of the
torso, head, and of the right arm/hand (Fig. 3). As can be
seen from the figure, the sensory layer is connected to the
motor layer either directly, to take into account the fact that
the initial pre-reaching behavior observed in children is highly
reflexive and oriented to sensory-motor exploration [40], [22]
and through 8 internal neurons, to allow the robot to develop
more elaborated and effective motor strategies. Overall, the
fact that the current sensory state can directly affect the current
state of the actuators is in line with evidence collected on
infants suggesting that they achieve reaching and grasping
behavior through a sequence of corrective sub-movements and
can correct their reaching trajectories online when the target
is shifted [41].

Internal and motor neurons consist of integrator units (i.e.
neurons whose current state also depends on their previous

state) that are updated as follows:

x
(t)
i = τi · x(t−1)

i + (1− τi) · s(t)
i

Where x(t)
i is the state of the i-th neuron at timestep t and

0 ≤ τi ≤ 1 is a time constant associated to each neuron [42],
[43]. s(t)

i is computed as:

s
(t)
i = gi · σ

 n∑
j

(wij · x(t)
j )− θi


Where gi is the neuron’s gain, wij is the connection weight
between the j-th and the i-th neuron, θi is the threshold and
σ(z) is the sigmoidal function = 1/(1+ e−z). Only the sight-
offset and the internal neurons are provided with variable gain
parameters. The gain of the other neurons is manually set to
1.0.
The state of the sensors, the network, and the motors is updated
every timestep (0.1 seconds). The motor neurons set the
desired angular position (scaled within the robot’s joint limits)
of 14 actuators controlling the following DOFs: head (3), torso
(3), right arm (7), right hand (1). Each motor neuron controls
a DOF of the robot with the exception of the hand, in which
a single motor neuron controls the extension/flexion of all the
fingers. The proprioceptors encode the current angular position
of the corresponding joints (the average extension/flexion of
the fingers’ joints, in the case of the hand), scaled from -1 to
1.
A set of 6 tactile neurons binary encode (-1 or 1) whether
the corresponding touch sensor located in the right hand palm
and fingertips (Fig. 4, Top) detects an obstacle or not. The
5 sight sensors (indicated in the figure as sight and offset
sensors), encode pre-elaborated information extracted from the
robot’s cameras (angle of view is 112◦ horizontally and 94◦

vertically) through a color blob identification software routine.
More specifically the three sight sensors encode the relative
position of the red color blob (ball) in the robot’s visual field
(Eq. 1 and 2) and the estimated ball distance up to 50cm (Eq.
3).

xsight1 = sgn(cx) · |cx|a (1)
xsight2 = sgn(cy) · |cy|a (2)

xsight3 =

{
1− 2l, if l < 0.5

0, otherwise.
(3)

Where cx and cy represent the coordinates of the detected
color blob in the camera image and sgn(x) is the sign of x.
In accordance with experimental findings on sight develop-
ment [44], [45], we vary the visual acuity/peripherality of the
robot between the first and the following training phases by
setting the value of a to 3 and to 1, respectively (see Fig. 4,
Bottom-Left). The offset sight sensors, that encode the offset
of the target object with respect to the hand over the plane of
the visual field [46], are updated on the basis of the following
equation:
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Fig. 4: Top: Location of the touch sensors in the robot’s hand.
Bottom Left: State assumed by the first two sight sensors
for different positions of the colored blob field of view. The
dashed and full lines indicate how the state varies with low and
high acuity vision respectively. Bottom Right: State assumed
by the two sight sensors on the basis of the offset between the
position of the ball and the position of the hand in the robot’s
view field.

xoffset1 =


z · dx if − dmax ≤ dx ≤ dmax

z · −dmax, if dx < −dmax

z · dmax, if dx > dmax

(4)

Where dx is the hand-object offset in the camera along the
x-axis. The value is clamped between −dmax and dmax, then
scaled by a factor z = 0.1. The state of the second neuron
xoffset2 is computed in the same way on the basis of the offset
over the y-axis (see Fig. 4, Bottom-Right).

C. Learning Process

In accordance with empirical evidence indicating that early
reaching and grasping skills in infants are acquired through
self-learning mechanisms that do not rely on explicit forward
and inverse model learning [33], [34] or imitation [32], the
robot’s training is realized through a form of trial and error
learning during which the robot is rewarded for sensorial
exploration and multimodal perception (seeing and touching
[25]). More specifically, we evaluate the performance level of
the robot at each time step by taking the smaller score between
the perceptual modalities:

pmultimodal = min (psight, ptouch) (5)

The value is averaged over 18 trials each lasting 20 seconds.
psight measures the proximity between the center of the robot’s
visual field and the object’s projection in the visual field, ptouch

measures the number of inner hand/fingers segments in contact

with the object. Both factors are scaled between 0 and 1.
The agents are trained through a trial and error process in
which the free parameters (connection weights, gains, bi-
ases and time constants) are varied randomly and variations
are retained or discarded depending on their effect on the
average pmultimodal measure. This is realized by using an
evolutionary method [47]. The initial population consists of
20 randomly generated genotypes encoding the connection
weights, gains, biases and time constants of 20 corresponding
neural controllers (each parameter is encoded by eight bits and
mutated with probability 0.02). Every experimental condition
is replicated 10 times, each time with a different seed for the
random number generator.
The training process is intended to represent ontogenetic
learning. The reason behind the choice of this algorithm is
that it is one of the simplest yet most effective ways to train
an embodied neural network through a trial and error process
based on a distal reward [29].

D. Incremental Training

The robot is subjected to an incremental training process
organized into the following three phases that model the three
corresponding stages of the development of reaching/grasping
capabilities in infants [12], [13], [14] (see Table I):

1) The pre-reaching phase, that in infants extends from
birth to approximately 4 months of age, is characterized
by the presence of simple head orientation [35] and
grasping reflex behaviors [36], by a low involvement of
cortical areas [48], and by a low visual acuity [44], [45].
During this phase infants develop a primitive orientation
behavior of the arm [49] that is realized through a
reduced usage (freezing) of the distal DOFs [24]), and
through the exhibition of a form of motor babbling (i.e.
a quasi-periodic behavior of the arm/hand leading to
a form of exploration of the area in which the object
is located) [7], [15]. To set similar conditions for this
training phase we initially provided the robot with two
simple motor reflexes: an orienting response that makes
the robot turn its head toward the colored object [35] and
a grasp reflex that makes the robot close its fingers when
its right palm touch sensor is stimulated [36]. These
reflexes are realized by manually setting the connection
weights indicated with full lines in Fig. 3. The immature
visual system is simulated by degrading visual acuity
(see Fig. 4, Bottom-left). Sight of the hand is not
included, because hand position is encoded indirectly
by proprioceptive information. Experimental evidence
showed indeed that infants can perform the first reaches
without seeing their own hand [50]. Finally, the limited
role of cortical areas during this phase is realized by
freezing the connection weights to and from internal
neurons to a null value (i.e. by subjecting to variations
only direct sensory-motor areas).

2) A gross-reaching phase, that extends approximately
from month 4 to the first year of age, is characterized
by an improved visual acuity [44], [45] and by greater
involvement of cortical areas [48]. At the end of the
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pre-reaching phase infants experience a short period
of motor suppression [30] followed by net improve-
ment in their reaching and grasping ability. The main
features of this developmental period are the reduced
use of motor babbling [15] and the un-freezing of the
distal DOFs [27], [36]. We modeled the maturational
constraints characterizing this phase by increasing the
visual acuity (see Fig. 4, Bottom-Left) and by also
subjecting the internal neurons’ incoming and outgoing
connection weights to variation. This loosely simulates
the intervention of cortical centers in the mediation of
sensory-motor reflexive behavior [48].

3) A fine-reaching phase, that follows the first year of
life, is characterized by the increasing role played by
visual information concerning the hand-object relation
[46] in later infancy [51], [52] and adulthood [53].
Due to limitation of attentional resources, this type of
information plays a minor role in the pre-reaching phase
[51], [50]. Furthermore experiments analyzing the role
of hand and target visual information in 9-month-old
infants during grasping show how visual monitoring
of the hand and target is not yet fully exploited
for online adjustment of the hand to match target
object orientation [54]. During this phase children
develop more reliable and smoother reaching [27],
[14], [26] and grasping [54] behaviors. To model the
maturation of the visual system, we provide the robot’s
neural controller with sight offset sensory information
encoding the current hand/object spatial relation (that
was missing during the previous phases). Note that
these sensors encode only the relation between hand
and object, so hand position is never explicitly given
to the network [50]. Furthermore, we subject the gain
parameters of the internal neurons to adaptive variations.

Each of the three adaptive phases is replicated 10 times. In
the case of the fine-reaching phase, each replication randomly
varies with respect to the initial value and to the variations
of the free parameters. In the case of the gross-reaching and
fine-reaching phases, each replication randomly varies with
respect to the variation of the free parameters. The transition
from the pre- to the gross-reaching phases and from the gross-
to the fine-reaching phases is performed by merging the best
2 robots of each of the 10 replication of the previous phase
into a single initial population made of 20 individuals and
by introducing the maturational changes as described above.
Each phase lasts 500 generations. The task, environment and
performance evaluation are kept constant across the phases.

E. Relation to the state of the art

As we mentioned in the introduction, a few pioneering
works addressed similar objectives. Schlesinger, Parisi and
Langer [55] studied the development of reaching behavior in
a simulated agent provided with a 2 dimensional arm with 2
actuated DOFs, a bi-dimensional vision system with 1 actuated
DOF, and a tactile sensor located on the final portion of the
arm. The agent’s neural network controller received as input

the angular state of the arm joints, the state of the tactile
sensor, and the visual information extracted from the camera
and controlled the 2 DOFs of the arm and 1 DOF of the visual
system. The neural network controller was trained through an
evolutionary algorithm on the basis of a performance criterion
calculated by computing the average number of time-steps in
which the agent touched the object.
Oztop et al [28] studied the development of grasping behavior
in a simulated robot provided with an arm and hand with
19 actuated DOFs. A reaching behavior was preprogrammed
in the robot on the basis of an inverse kinematics method.
Learning was thus confined to the mapping of a series of object
affordances (extracted from sensory information) into a series
of grasping parameters able to shape the hand-coded reaching
routine into an effective grasping behavior. The neural network
controller was trained through a reinforcement learning algo-
rithm and received positive reward for the trials producing
successful or nearly successful grasps and negative reward
for trials leading to unstable grasps or complete failures. A
significant Gaussian noise superimposed on the network output
state was introduced to generate exploratory behaviors that
could enabled learning.
Berthier et al. [2] studied the development of reaching be-
havior in a simulated robot provided with an arm with
2 controlled DOFs on the shoulder (flexion-extension and
adduction-abduction). The robot’s neural network controller
received as input the current state and velocity of the two
joints and produced as output the intensity of the torque to be
applied by two muscle-like actuators. The network was trained
through a reinforcement learning algorithm by providing to the
robot positive and negative rewards when the hand of the robot
approached or moved away from the target, respectively. As
in the case of Oztop et al. [28] noise was added to the actuator
state to generate exploratory behaviors.
The model and experiments presented in this paper extend
these pioneering works in several respects. We provide a
model of reaching and grasping development rather than a
model of reaching development only or grasping development
only. We address the three primary developmental phases
of reaching/grasping development rather than reaching or
grasping onset only. We use a physically realistic model,
that takes into account the gravity, inertia, and the physical
consequences of robot/environmental interactions and that, as
in the case of Oztop et al. [28], matches relatively well with
human morphology in terms of the kinematic chain and DOFs.
We demonstrate how the production of exploratory and motor
babbling behavior and the freeze and de-freeze of distal DOFs
can emerge spontaneously during the developmental process,
as a result of the tendency of the adapting robots to self-
structure their learning task to their current proficiency level.
We demonstrate how the development of a new capacity
can lead to the temporary regression of other pre-existing
capacities. We will illustrate these aspects and the relation with
previous studies in more details in the following sections.

IV. RESULTS

In this section we describe the obtained results. First we
describe the behavior displayed by the robots and the relation
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TABLE I: Schematization of the developmental phases.

Phase Maturational Constraints Constraints Implementation Resulting Behaviors

Pre-reaching
- Reduced role of cortical areas [48] - Adaptation of sensory-motor - Motor babbling [22]

connections only - DOF freezing [24]
- Reflexes [35], [36] - Handcoded weights - Arm orienting [49]

- Low visual acuity [44], [45] - xsight1 and xsight2 with a = 1

Gross-reaching - Increased role of cortical areas [48] - Adaptation of both sensory-motor - Initial motor suppression [30]
and internal connections - Reach onset [7]

- High visual acuity [44], [45] - xsight1 and xsight2 with a = 3

Fine-reaching - Hand/Object Perception [46] - Availability of xoffset1 and xoffset2
- Smoother and straighter reach [27], [12], [26]

- Anticipatory grasp [54]
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Fig. 5: Percentage of grasped objects, percentage of reached
objects, reaching speed, and reaching straightness (i.e. the ratio
between the hand/object initial distance and the length of the
trajectory of the hand during successfully reaching actions
[27], [26]). Each bar indicates the average results obtained
by post-evaluating 50 robots (i.e. the best 5 robots of each of
the 10 replications) for 45 trials at end of the pre-, gross- and
fine-reaching phases.

between the robots’ and the infants’ behaviors during the pre-
, gross-, and fine-reaching developmental phases. Afterwards
we describe the role of the different sensory modalities and
the role of the maturational constraints. The implications of
the results are discussed in the next section.

A. Relation between humans’ and robots’ behaviors

Overall, the analysis of the robots’ performance (see
Fig. 5 Top and Fig. 9 Top-Left) and the visual in-
spection of the robots’ behavior (videos available from
http://laral.istc.cnr.it/esm/reach/ ) show that the robots success-
fully develop quite good reaching and relatively good grasping
capabilities. The analysis of the behavior displayed by the
robots at the end of the three developmental phases (reported
below) indicates that the robots’ behavior and the course of
the developmental process is analogous to that observed in
humans from 2 to 18 months of age.

1) Pre-reaching: At the end of the pre-reaching phase the
robots manage to reach (i.e. touch the object at least once with
the hand) in about half of the trials (Fig. 5, Top-Right). The
behavior of the robots at this stage consists in the exhibition
of large quasi-periodic circular movements of the hand (Fig.
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Fig. 6: Top: Hand-shoulder and hand-target distance (in me-
ters). Data collected during a post-evaluation analysis con-
ducted for 9 trials on the best agent of the best replication
at the end of the pre-reaching phase. The vertical lines mark
the beginning of each trial in which the posture of the robot
is reset. Bottom: Movement variability (i.e. standard deviation
of the joint encoders) for the elbow (Left), shoulder (Center)
and trunk (Right) joints. Each bar indicates the average results
obtained by post-evaluating 50 robots (i.e. the best 5 robots
of each of the 10 replications) for 45 trials at end of the pre-,
gross- and fine-reaching phases.

8, first column) produced with the arm extended. This is
realized through a large use of the DOFs of the trunk and
of the shoulder and a limited use (locking) of the DOF of the
elbow, as demonstrated by the fact that the distance between
the shoulder and the hand remains almost constant during
reaching attempts (Fig. 6, Top). The exploratory nature of this
behavior and the fact that at this stage the robots do not yet
rely on visual information to bring their hand directly toward
the ball is demonstrated by the fact that the behavior of the
robot remains substantially the same during post-evaluation
tests in which the target ball is absent and in tests in which
the vision system is impaired (Fig. 8).
Therefore, as in the case of infants, the developmental process
during the pre-reaching phase leads to the development of a
preliminary reaching capacity [49] that is realized through the
exhibition of periodic exploratory behaviors [15], [21], [22]
characterized by the locking of the elbow [16], [24].

2) Gross-reaching: During the gross-reaching phase the
robots improve their ability to grasp, i.e. touch the object with
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the palm and at least one of the fingers (Fig. 5, p < 0.001).
Moreover, they reach objects through more direct trajectories
as indicated by the significant increase of straightness (p <
0.01) and decrease of movement speed (p < 0.05), see Fig. 5,
Bottom. This phase also leads to a reduction in the shoulder
DOFs usage (p < 0.001, see Fig. 6). The visual inspection of
the best robots at the end of this phase reveals that they bring
their arm on the lower part of the target area while orienting
their palm up and then produce long swipes up. When they
don’t grasp the ball they try again with similar swipes. On
the other hand, the frequency of successful reaches decreases
(p < 0.001, see Fig. 5) with respect to the pre-reaching phase.
As indicated by Fig. 7, that shows the spatial distribution
of successful reaches, this is due to the fact that during the
gross-reaching phase the robots specialize on certain regions
of their peripersonal space in which they succeed in reaching
and grasping objects.
Many of the behavioral variations reported above are anal-
ogous to those observed in infants during this phase. In
particular, the onset of the grasping skill [56], the emergence
of more direct reaching movements [7], the reduced mobility
of the shoulder [16], [30] and the (temporary) regression on
reaching capabilities [16] have been documented in the cited
developmental studies. However, the un-freezing of the elbow
joint displayed by infants during this phase [24] is observed
later in our robots (i.e. during the fine-reaching phase).

3) Fine-reaching: During the fine-reaching phase, the
robots improve their ability to reach and grasp the objects
(p < 0.001) and acquire a capacity to successfully accomplish
these actions in all areas (Fig. 7). The analysis of speed
and straightness in reaching, instead, does not indicate any
significant improvement during this phase (Fig. 5, Bottom).
The analysis of the DOFs (Fig. 6) indicates a significant
increase in the mobility of the elbow, shoulder, and trunk joints
with respect to the gross-reaching phase (p < 0.001).
Overall, the improvement in reaching and grasping perfor-
mance observed in this phase [26], [54] and the increase
in mobility for the elbow, shoulder and trunk joints [13],
[24] are in line with what has been observed in infants, who
however also show a significant improvement in smoothness
and straightness [12], [27] during this phase. Notice also how
the robots do not reach an optimal performance level in grasp-
ing. This might be the result of some of the simplifications
introduced in the robotic model, i.e. the fact that the robot
is made of completely rigid material, the limitation in the
resolution of the robots’ sensory system, the fact the five
fingers are controlled by the same actuator.

B. On the role of the different sensory modalities

To better analyze the role of proprio, tactile and visual
sensory information during the developmental process we
compared the performance of the robots at the end of the three
training phases in a normal condition and in three control con-
ditions in which: tactile sensory information was not provided
(no touch), visual information was not provided (no sight),
neither tactile nor visual sensory information were provided
(nothing). As shown in Fig. 9, performance significantly varies

within the four experimental conditions (normal vs. no touch
vs. no sight vs. no exteroceptive, p < 0.01, Kruskal-Wallis
test).
The most notable effect is the strong impairment caused by
the absence of visual information in the fine-reaching phase.
In normal conditions and in absence of tactile information
the fine-reachers outperform the gross-reachers (p < 0.05
and the gross-reachers outperform the pre-reachers (p < 0.05,
two-tailed Mann-Whitney U test). Thus the absence of tactile
information does not reverse the performance relation between
the three phases. On the contrary, in the control conditions
in which visual information is not provided or neither visual
nor tactile information are provided, on the contrary, the
gross-reachers outperform the fine-reachers (p < 0.05). This
indicates that the development of an improved capacity to
reach and grasp objects based on the exploitation of visual
information during the fine-reaching phase leads to a temporal
regression in the capacity to reach and grasp objects on the
basis of proprio and tactile information only.

C. On the role of maturational constraints

In this section we describe the results obtained in a series
of control experiments carried out to verify whether the mat-
urational constraint have an adaptive or bias role, i.e. channel
the adaptive process toward better solutions or toward specific
types of solutions. For this purpose we took advantage of the
possibility offered by our artificial model to freely modify any
possible parameter or combination of parameters to carry out
experiments that could not be performed on real children.
Fig. 10 shows a graphical summary of the experimental
conditions and their relations. The pre-reaching (pre), gross-
reaching (gross), and fine-reaching (fine) labels indicate the
standard experiments reported above. We used -h to indicate
a pre-reaching phase in which the robots were provided with
full visual acuity (pre-h) or a gross-reaching phase following a
pre-h phase (gross-h). The asterisk indicates the absence of re-
flexes, the symbol ˆ indicates non-incremental experiments. So
grossˆ indicates experiments in which the robots are allowed
to modify or the connection weights of the internal neurons
from the beginning without first undergoing a pre-reaching
phase. To allow fair comparison, in this control condition the
training lasts the sum of the pre- and gross-reaching phases.
grossˆ* is an experimental condition analogous to grossˆ in
which however the robots do not have the reflexes. Finally,
fineˆ indicates an experimental condition in which the robots
are trained from the beginning in the maturational state that
characterize the fine-reaching phase. Training length in this
case equals the sum of the pre-, gross- and fine-reaching
training length.
From the statistical comparison between each performed ex-
perimental condition reported in Fig. 10 we can observe that
the maturational constraint constituted by the lack of internal
resources (i.e. internal neurons) during the pre-reaching phase
plays an adaptive role since the gross condition significantly
outperforms the non-incremental grossˆ condition (p < 0.05,
two tailed Mann-Whitney U test). On the other hand, the
reduced visual acuity during the pre-reaching phases, the
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Fig. 7: Spatial distribution of successful reaches (upper row) and grasps (lower row) at the end of the pre-, gross-, and fine-
reaching phases. Data obtained during a post-evaluation analysis in which the 5 best robots of each of the 10 replications of
each phase has been tested for 45 trials, during which the position of the target objects has been systematically varied so to
cover all possible target positions.

availability of reflexes, and the inability to perceive the off-
set between the hand and the object during the pre- and
gross-reaching phase do not constitute adaptive constraints.
Indeed the standard experimental conditions do not lead to
significantly better performance with respect to the control
experiments in which the visual acuity is not reduced during
the pre-reaching phase (pre versus pre-h and gross versus
gross-h), the reflexes are not provided (pre versus pre*, grossˆ
versus grossˆ*, fineˆ versus fineˆ*) and the offset between the
hand and the object is perceived from the beginning of the
developmental process (fine versus fineˆ).
For what concerns the qualitative effects of maturational con-
straints on the strategies developed by the robots, the reduced
visual acuity during the pre-reaching phase does not lead to
an appreciable effect on the observed behavior with respect to
the control condition. Similarly, the lack of reflexes does not
alter significantly the type of behavior exhibited by the robot
with respect to the control condition. On the contrary, the lack
of visual perception of the hand/object offset and the lack of
internal processing resources constitute two pre-requisites for
the development of the exploratory (motor babbling) behavior.
Indeed, the robots trained in the fineˆ* and fineˆ experimental
conditions never display such behavior during the course of
their developmental process.

V. DISCUSSION

Our model and results demonstrate how reaching and
grasping skills, analogous to those displayed by infants from
2 to 18 months of age, can be acquired through a trial and
error learning process driven by simple visual and tactile
feedback. We extend the evidences provided by previous
related works [2], [19], [28], [55] modeling three subsequent

developmental phases and using an experimental scenario
that matches rather closely the complexity of the problem
domain.
The model proposed account for a large set of the empirical
observations reported in the literature and for the factors
that can be at the basis of the emergence of the observed
phenomena. A first aspect that characterizes both infants’
[16], [24] and robots’ development consists in the reduced use
(freeze) followed by a re-extended use (un-freeze) of the distal
DOFs of the robot arm. The observation that these variations
emerge spontaneously in our experiments indicates that the
presence of maturational constraints that control directly the
freezing and de-freezing of selected joints, postulated by
[19], might be unnecessary. Our results thus indicate that, as
hypothesized by [20], this process might rather result as a
side effect of the attempt to acquire the required skills. In
other words it might results first by the tendency to simplify
the learning task and then by the tendency to relax the
restrictions once a good level of proficiency is attained.
A second phenomenon that characterize the developmental
process of our robots and that matches experimental evidences
[7], [15], [21], [22] is constituted by the emergence of the
exploratory (motor babbling) behavior during the pre-
reaching phase. This transient behavior is later replaced
by more effective movements directed toward the target
objects during the gross- and fine-reaching phases. The fact
that in our experiments the motor babbling behavior occurs
spontaneously without the need of dedicated mechanisms (e.g.
white noise affecting the output of motor neurons, as proposed
by Berthier et al [2], and Oztop et al. [28]) demonstrates
that it might be the result of a self-structuring process. In
this case, the initial simplification of the task is achieved
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Fig. 8: Trajectories of the robot’s hand observed during post-evaluation analysis in which the robots have been deprived of
tactile and/or visual sensory information. Data collected for one trial on the best robot of the best replication at the end of the
pre-, gross-, and fine-reaching phases.

through a reduction of the processed sensory information
(i.e. which is achieved by ignoring tactile information). Such
simplification is then abandoned after the robots achieve a
given competence level. At this point, in fact, the utilization
of tactile information becomes a necessary prerequisite for
further improvements.
A third phenomenon consistent with the experimental
literature [16] consists in the temporal regression of the
reaching capabilities occurring during the gross-reaching
phase at the onset of a reliable grasping capability. The fact
that the regression involves a reduction of the peri-personal
space in which the robot operates suggests that also this
phenomenon can be interpreted as a side effect of the robots’
tendency to temporarily simplify their learning task until they
reach a proficiency level that creates the adaptive conditions
for the elimination of the self-imposed simplification.
The three phenomena described above can thus be considered
as manifestations of a general self-structuring process that
operates by reducing temporarily the complexity of the motor
space, of the sensory space, and of the relevant task space,
respectively.
Finally, another contribution of this work concerns the

identification of the role of the maturational constraints.
The obtained results indicate that the lack of internal neural
resources during the pre-reaching phase has an adaptive
role (i.e. channels the developmental process toward better
solutions during the gross-reaching phase) and a bias role
(i.e. represent a necessary condition for the development
of the exploratory motor-babbling behavior). This result
suggests that the later involvement of cortical areas [48] can
play an adaptive role in humans and might have evolved to
accomplish this function. On the other hand, the fact that
the other considered maturational constraints do not play an
adaptive role suggests that they are simply a manifestation
of parallel maturational processes. This result might serve
as a general warning against the attempt to overestimate the
functional role of the incremental nature of the developmental
process.

VI. CONCLUSIONS

We presented a neurorobotic model of early reaching and
grasping development. The characteristics of the model, of
the training scenario, and of the maturational factors that
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constraint the successive phases of the developmental process
have been designed on the basis of the relevant knowledge
reported in the child development literature. The obtained
results demonstrate how the robots acquire reaching and
grasping capabilities analogous to those displayed by infants.
The analysis of the behavior exhibited by the robots during
successive developmental phases demonstrates how the model
is able to account for and to integrate into a single frame-
work a large set of the empirical observations reported in
the literature. Overall, the analyses performed highlight the
importance of multiple self-structuring processes characterized
by the retention of variations that temporarily reduce the
complexity of the adaptive task followed by the retention of
variations that re-expand the adaptive challenge as soon as a
given competence level is acquired.
The realization of comparative experiments (that could not be
performed on humans) in which the maturational constraints
have been manipulated systematically allowed us to disen-
tangle the constraints that play an adaptive role and/or that
bias the adaptive process toward the development of specific
strategies from those that do not play any significant role.
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[15] C. von Hofsten and L. Rönnqvist, “The structuring of neonatal arm
movements,” Child development, vol. 64, no. 4, pp. 1046–57, 1993.

[16] J. P. Spencer and E. Thelen, “Spatially specific changes in infants’
muscle coactivity as they learn to reach,” Infancy, vol. 1, no. 3, pp.
275–302, 2000.

[17] S. Schaal, “Arm and hand movement control,” in Handbook of Brain
Theory and Neural Networks, 2nd edn, M. A. Arbib, Ed. Cambridge,
MA: MIT Press, 2002, pp. 110–113.

[18] M. Asada, K. Hosoda, and Y. Kuniyoshi, “Cognitive developmental
robotics: A survey,” IEEE Transactions on Autonomous and Mental
Development, vol. 1, no. 1, pp. 12–34, 2009.

[19] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection Science, vol. 15, no. 4, pp. 151–190,
2003.

[20] N. A. Bernstein, The co-ordination and regulation of movements. Ox-
ford: Pergamon Press, 1967.

[21] J. Piaget, The origin of intelligence in the child. London: Routledge
and Kegan Paul, 1953.

[22] J. Piek, “The role of variability in early motor development,” Infant
Behavior and Development, vol. 25, no. 4, pp. 452–465, 2002.

[23] L. Berthouze and M. Lungarella, “Motor skill acquisition under environ-
mental perturbations: On the necessity of alternate freezing and freeing
of degrees of freedom,” Adaptive Behavior, vol. 12, no. 1, pp. 47–63,
2004.

[24] N. E. Berthier, R. K. Clifton, D. D. McCall, and D. J. Robin, “Prox-
imodistal structure of early reaching in human infants,” Experimental
brain research, vol. 127, no. 3, pp. 259–69, 1999.

[25] P. Rochat, “Object manipulation and exploration in 2- to 5-month-old
infants,” Developmental Psychology, vol. 25, no. 6, pp. 871–884, 1989.

[26] E. Thelen, D. Corbetta, and J. P. Spencer, “Development of reaching
during the first year: role of movement speed,” Journal of experimental
psychology: human perception and performance, vol. 22, no. 5, pp.
1059–76, 1996.

[27] N. E. Berthier and R. Keen, “Development of reaching in infancy,”
Experimental Brain Research, vol. 169, pp. 507–518, 2005.

[28] E. Oztop, N. S. Bradley, and M. A. Arbib, “Infant grasp learning: a
computational model,” Experimental Brain Research, vol. 158, no. 4,
pp. 480–503, 2004.

[29] M. Schlesinger, “Evolving agents as a metaphor for the developing
child,” Developmental Science, vol. 7, pp. 154–168, 2004.

[30] C. von Hofsten, “Developmental changes in the organization of pre-
reaching movements,” Developmental Psychology, vol. 20, no. 3, pp.
378–388, 1984.

[31] J. L. McClelland, M. M. Botvinick, D. C. Noelle, D. C. Plaut, T. T.
Rogers, M. S. Seidenberg, and L. B. Smith, “Letting structure emerge:
connectionist and dynamical systems approaches to cognition,” Trends
in cognitive sciences, vol. 14, no. 8, pp. 348–56, 2010.

[32] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical transactions of the Royal
Society of London. Series B, Biological sciences, no. 358, pp. 537–547,
2003.

[33] D. M. Wolpert, “Computational approaches to motor control,” Trends in
Cognitive Science, vol. 1, pp. 209–216, 1997.

[34] D. M. Wolpert and Z. Ghahramani, “Computational principles of move-
ment neuroscience,” Nature Neuroscience, vol. 3, pp. 1212–1217, 2000.

[35] Y. N. Sokolov, Perception and the conditional reflex. London: Pergamon
Press, 1963.

[36] C. Lantz, K. Meln, and H. Forssberg, “Early infant grasping involves
radial fingers,” Developmental medicine and child neurology, vol. 38,
no. 8, pp. 668–74, 1996.

[37] J. Atkinson, “Human visual development over the first 6 months of life.
a review and a hypothesis,” Human neurobiology, vol. 3, no. 2, pp.
61–74, 1984.

[38] G. Sandini, G. Metta, and D. Vernon, “Robotcub: An open framework
for research in embodied cognition,” International Journal of Humanoid
Robotics, vol. 8, no. 2, pp. 18–31, 2004.

[39] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, J. Santos-
Victor, M. C. Carrazzo, F. Becchi, and D. G. Caldwell, “icub - the
design and realization of an open humanoid platform for cognitive and
neuroscience research,” International Journal of Advanced Robotics,
vol. 21, no. 10, pp. 1151–75, 2007.

[40] R. Angulo-Kinzler, “Exploration and selection of intralimb coordination
patterns in 3-month-old infants,” Journal of Motor Behavior, vol. 33,
pp. 363–376, 2001.



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. X, NO. X, XXXXXX XXXX 12

[41] N. E. Berthier and D. J. Robin, “Midreach correction in 7-month-olds,”
Journal of motor behavior, vol. 30, no. 4, pp. 290–300, 1998.

[42] S. Nolfi and D. Marocco, “Evolving robots able to integrate sensory-
motor information over time,” Theory in Biosciences, vol. 120, no. 3-4,
pp. 287–310, 2001.

[43] R. D. Beer, “On the dynamics of small continuous-time recurrent neural
networks,” Adaptive Behavior, vol. 4, no. 3, pp. 471–511, 1995.

[44] M. L. Courage and R. J. Adams, “Infant peripheral vision: the develop-
ment of monocular visual acuity in the first 3 months of postnatal life,”
Vision research, vol. 36, no. 8, pp. 1207–15, 1996.

[45] A. Hendrickson and D. Druker, “The development of parafoveal and
mid-peripheral human retina,” Behavioural Brain Research, vol. 49,
no. 1, pp. 21–31, 1992.

[46] T. R. Makin, N. P. Holmes, and H. H. Ehrsson, “On the other hand:
dummy hands and peripersonal space,” Behavioural brain research, vol.
191, no. 1, pp. 1–10, 2008.

[47] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. Cambridge, MA:
MIT Press, 2000.

[48] J. H. Martin, “The corticospinal system: from development to motor
control,” The Neuroscientist, vol. 11, no. 2, pp. 161–73, 2005.

[49] C. von Hofsten, “Eye-hand coordination in the newborn,” Developmental
Psychology, vol. 18, no. 3, pp. 450–461, 1982.

[50] R. K. Clifton, D. W. Muir, D. H. Ashmead, and M. G. Clarkson, “Is
visually guided reaching in early infancy a myth?” Child development,
vol. 64, no. 4, pp. 1099–1110, 1993.

[51] N. E. Berthier and R. L. Carrico, “Visual information and object size in
infant reaching,” Infant Behavior and Development, vol. 33, no. 4, pp.
555–566, 2010.

[52] M. M. Smyth, J. A. Katamba, and K. A. Peacock, “Development
of prehension between 5 and 10 years of age: distance scaling, grip
aperture, and sight of the hand,” Journal of Motor Behavior, vol. 36,
no. 3, 2004.

[53] A. Churchill, B. Hopkins, and L. Rönnqvist, “Vision of the hand
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