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Abstract

Evolutionary Robotics (ER) is a powerful approach for the automatic synthesis of robot controllers, as

it requires little a priori knowledge about the problem to be solved in order to obtain good solutions.

This is particularly true for collective and swarm robotics, in which the desired behaviour of the group

is an indirect result of the control and communication rules followed by each individual. However, the

experimenter must make several arbitrary choices in setting up the evolutionary process, in order to

define the correct selective pressures that can lead to the desired results. In some cases, only a deep

understanding of the obtained results can point to the critical aspects that constrain the system, which

can be later modified in order to re-engineer the evolutionary process towards better solutions. In this

paper, we discuss the problem of engineering the evolutionary machinery that can lead to the desired

result in the swarm robotics context. We also present a case study about self-organising synchronisation

in a swarm of robots, in which some arbitrarily chosen properties of the communication system hinder

the scalability of the behaviour to large groups. We show that by modifying the communication system,

artificial evolution can synthesise behaviours that properly scale with the group size.

Keywords: Evolutionary Robotics, Swarm Robotics, Self-Organisation, Engineering Emergence
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1 Introduction

The synthesis of controllers for autonomous robots is a complex problem that has been faced with a

large number of different techniques [32]. Among the various possibilities, Evolutionary Robotics (ER)

represents a viable approach for the automatic synthesis of robot controllers requiring little a priori

knowledge about the solution of a given problem [26]. In the swarm robotics context, ER can be very

useful to synthesise efficient self-organising behaviours and to obtain systems with desired emergent

properties, such as robustness to individual failures, flexibility and adaptivity to environmental changes,

or scalability to different group size. In fact, ER operates by introducing variations at the level of the fine-

grained characteristics of the robots, and by retaining or discarding these variations on the basis of the

effect they have on the global behaviour exhibited by the swarm. This bottom-up approach contrasts with

classic top-down approaches (e.g., divide-and-conquer), which require an a priori arbitrary decomposition

of the group behaviour into individual behaviours and interaction rules. Such decomposition is difficult to

be performed, due to the indirect relationships between the rules executed by the robots—which determine

the individual reaction to perceived sensory states—and the overall group behaviour. ER solves this design

problem by synthesising self-organisation from the bottom up, therefore relieving the experimenter from

the need to guess both the appropriate behaviour that each individual robot should produce, and the

control mechanisms that can lead to the exhibition of such behaviour [39, 36]. More importantly, in some

cases the designer might be unable to identify the behaviour that should be exhibited by each individual

robot that, in interaction with the other robots, can lead to the desired swarm behaviour [12].

On the other hand, ER does not completely exempt the experimenter from the design problem since

she/he still has to face the problem of designing the setup of the evolutionary experiment, together with

those characteristics of the robot and of the environment that are predetermined and fixed. In this

case, the design effort concerns the preconditions that make the evolution of the self-organising process

possible, along with its emergent properties. Although designing an experimental setup that enables the

evolution of effective solutions should be in principle simpler than designing the solutions themselves, the

lack of systematic methodologies that can guide such an experimental design may prevent an effective

exploitation of the potential advantages of the ER approach, or might condition such exploitation to the

intuition of the experimenter. We believe that there is a strong necessity of formalising an engineering

approach for the evolution of robot behaviours, above all within a relatively novel and complex domain

like swarm robotics.

In this paper, we make a step in this direction by discussing which are the relevant choices that must

be made when setting up an evolutionary experiment in a swarm robotics context. In particular, we

focus on the robot sensory-motor system, the genotype-to-phenotype mapping, the fitness function and

the ecology in which the evolutionary process is carried out. Moreover, we suggest that, like in any engi-
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neering exercise, an iterative approach can guide the design process through incremental improvements.

In this iterative process, a fundamental role is played by testing and evaluation of the obtained results,

an activity that can convey useful information about the critical aspects of the system that must be

improved. In this respect, we discuss a case study in which self-organising synchronisation behaviours

are evolved in a robotic system. The goal of the experiment is to understand which are the minimal

behavioural and communication strategies that allow a group of robots to synchronise their individual

periodic behaviour [38]. In particular, we are interested in the scalability property of the evolved be-

haviours to large groups. By analysing the initial results, we discovered that the arbitrary choice made in

the communication system was hindering the evolved behaviours to suitably scale to large groups. This

finding allowed us to re-engineer the characteristics of the robots by identifying a new communication

channel, and to run further evolutionary experiments that resulted in properly scalable behaviours.

Engineering emergence in ER can be broadly linked to recent studies on guided self-organisation [28,

29]. In these studies, various techniques are proposed to obtain desired behaviours through guidance

rather than control. In fact, self-organising systems are complex and strongly non-linear, and attempts

to obtain desired effects through direct control are often ill-suited [14]. It is therefore more convenient to

steer self-organisation toward desirable outcomes, exploiting the dynamics of the self-organising process

itself. Therefore, on the one hand self-organisation is promoted in a task-independent fashion, and

on the other hand guidance is given to the self-organising process in order to steer it towards desired

patterns. Recent studies investigated different approaches to guide self-organisation. Information-driven

evolution is an ER technique that allows to produce robot controllers exploiting a task-independent

fitness function, usually based on information theoretic measures, such as Shannon’s entropy or mutual

information [30, 16, 15, 33]. The task independent metric provides intrinsic selective pressures that favour

sensory-motor coordination or correlations among different agents’ behaviours. However, some constraint

is necessary to channel evolution towards the desired behaviour. Constraints can be given in the form of

explicit reward functions to be merged with the task-independent ones, or can be implicit in the robot

configuration or in the robot ecology. A similar approach, but on a ontogenetic time-scale, is homeokinetic

learning [17]. Here, the spontaneous generation of behavioural patterns through homeokinesis is guided by

learning through reinforcement signals [18]. Homeokinesis refers to the ability to produce and maintain a

definite kinetic regime. In the robotic domain, this is achieved through learning an internal representation

of the current behaviour (a self-model) and to adapt the behaviour in order to minimise the difference with

the learned model [8]. The interactions between model and behaviour produce a spontaneous discovery

and maintenance of behavioural patterns [7]. However, reinforcement signals are necessary to channel

the spontaneous generation of behaviours toward desired outcomes [17].

In the context of evolutionary swarm robotics, self-organisation need to be guided at both the phy-

logenetic and ontogenetic time-scale. That is, we need to specify the correct selective pressures in order
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to observe the evolution of the desired group behaviours. Moreover, we need to setup the robotic system

in order to obtain desired emergent properties of the evolved self-organising behaviours. In Section 2 we

discuss which are the relevant choices that need to be taken in setting up an evolutionary experiment

within a swarm robotic context. We consider four main components: the robot sensory-motor system in

Section 2.1, the genotype-to-phenotype mapping in Section 2.2, the fitness function in Section 2.3 and the

ecology in Section 2.4. In Section 3, we discuss our iterative approach in engineering and re-engineering

the evolution of self-organising behaviours. An instance of this process is presented in the case-study of

Section 4, which is discussed in detail in order to show how the proposed methodology can be applied.

Section 5 concludes the paper.

2 Engineering emergence in evolutionary swarm robotics

As mentioned above, the design of an evolutionary experiment in a swarm robotics context requires to

make a number of choices. First of all, the experimenter should determine which are the characteristics

of the robots that are predetermined and fixed (e.g., the available sensors and actuators and/or the robot

body structure), and which are the characteristics subjected to the evolutionary process. Secondly, the

experimenter should determine the way in which these evolved features are represented in the artificial

genotype—in other words, how the genotype maps to the phenotype, that is, to the robotic system.

Thirdly, the experimenter should devise the performance metric or fitness function to evaluate the evolving

genotypes, which determines the selective pressures that allow to progressively evolve the desired solution.

Finally, the experimenter should determine the ecology (i.e., the characteristics of the environment in

which the robots are evaluated), which in turns introduces ecological selective pressures to which evolving

robots are exposed.

Guidance to the evolution of self-organisation can be obtained through suitable choices at the moment

of the design of the experiment. In this section, we discuss the above issues under an engineering

perspective. That is, we consider that the robotic hardware and the task to be performed by the robots

are specified in advance, and the focus of the experiment is the synthesis of a controller for the robotic

group.1 We limit our discussion to the swarm robotics domain, and we refer the reader to the ER

literature for the topics not covered here [19, 26, 13, 9]. A schematic view of the relevant design choices

for the evolution of self-organising behaviours that we consider in this work is given in Table 1.

Place Table 1 about here.

1A thorough discussion of all possible instances of evolutionary robotic experiments is out of the scope of this paper.
Nevertheless, this discussion can be easily generalised to issues that are not covered in these pages.
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2.1 Sensory-motor system

The body and the sensory-motor system of the robots crucially constrain the way in which the robots

can interact with the physical and social environment, and set the preconditions for the evolution of

the desired global behaviour and for the emergence of group-level properties. When the objective of an

experiment is, as in the case considered here, to enable a group of robots to perform a certain function

or to solve a certain task, the characteristics of the body and of the overall sensory-motor system are

predetermined and fixed. The experimenter, however, should determine a subset of the available sensors

and actuators that will be used. Moreover, it must be defined how the chosen sensors and actuators

are interfaced with the robot control system. The selection of the appropriate sensors and actuators is

usually straightforward. However, it can be desirable and sometimes necessary to process the raw sensor

data to obtain a more compact or better usable information. This pre-processing can be as simple as

a linear scaling of the sensor reading, but can even be a complex function of many sensory inputs. For

instance, a coloured camera provides a very rich information, and some feature extraction algorithm is

necessary in order to recognise useful patterns within the image. The choices of the quantity and quality

of the information extracted by the camera, and in general by a pre-processing of raw data, can be of

fundamental importance for the evolvability of the system, and should be carefully taken into account.

A similar discussion holds for communication. Robots may be provided with different communication

devices, which enable to chose the type of messages exchanged (e.g., implicit communication through

infrared sensors detecting the other robots body [31] or torque sensors affected by the movement of

other robots [3], sound communications through microphones and speakers [37], or light communication

through coloured LEDs and cameras [6, 22, 23]). The definition of the communication channel might

significantly affect the evolutionary process, as it has a strong influence on the ability of the robots to

interact with each other, and therefore to self-organise. In Section 4, we present a case study in which

an ill-suited communication system severely limits the scalability of the evolved behaviours.

Overall, the important remark is that the selection of the appropriate sensory-motor system can be

extremely relevant, as it sets the preconditions for the evolution of the desired group behaviour. Not

only this choice defines the actual capabilities of the individual robots, but it also states which are the

interaction abilities among the robots, that is, through which channels information is exchanged among

the robots, and which is the capacity of these information channels.

2.2 Genotype-to-phenotype mapping

In evolutionary computing methods (including ER), a genotype is usually a string of bits or real numbers

that encodes a potential solution to a given problem. In ER, the genotype specifies the characteristics of

a robotic system that should be able to display a desired behaviour. The experimenter therefore has to

specify the genotype-to-phenotype mapping, i.e., the rules or the processes that determine the relation



7

between the genotype—the string of bits or numbers—and the phenotype—the robotic system [19, 9].

A common approach in ER consists in a direct mapping between genotype and controller parameters,

in which each free parameter of the controller is encoded into a corresponding part (gene) of the genotype.

This implies that artificial evolution operates on the parameters that regulate the fine-grained interactions

between the robot and the environment, which in turns determine the behaviour exhibited by the robot,

within the possibilities and the limits imposed by the hardware characteristics of the robots and by the

architecture of the robot controllers that are designed by the experimenter. A widely used approach in

the literature consists in encoding into the genotype a fixed number of parameters of a neural network,

while the neural network size, topology and connectivity remain fixed. The use of neural controllers allows

the evolutionary process to operate on the network parameters that regulate the fine-grained interactions

between the robot and the environment, which in turns determine the behaviour exhibited by the robot.

In this way, the evolutionary process shapes the behaviour exhibited by the robot in detail. The use of a

fixed architecture and of a direct encoding has the advantage of being simple, but requires to choose the

architecture of the controller beforehand. This again might turn out to be critical since the characteristics

of the architecture (i.e., the number of neurons and/or the presence of recurrent connections) might

strongly influence the obtained result. Moreover, it is difficult for the experimenter to predict the type

of behaviours that the robot should exhibit and consequently the characteristics that the architecture

should have in order to enable the production of such behaviours. A different approach consists in

the indirect encoding, for which the genotype “develops” in a corresponding phenotype according to

some developmental rules that are encoded in the genotype. This approach is followed to mimic the

embryogenesis, and offers the possibility to specify complex control structures with compact genetic

encodings (therefore reducing the search space), and to avoid fixing the controller structure beforehand.

However, these advantages come at some cost: it is necessary to define a suitable set of developmental

rules, and to ensure that such rules have the necessary expressive power.

In collective and swarm robotics, whether a direct or indirect encoding is used, it is anyway necessary

to specify the characteristics of the whole robotic group. The relevant choice here concerns the genetic

relatedness between the individuals forming the group, that is, whether they are genetically homogeneous

(i.e., they are clones) or heterogeneous (i.e., they differ from each other). In a homogeneous group, the

genotype usually encodes the parameters of a single controller, which is duplicated several times and

embodied in all the robots taking part to the experiment (i.e., all individuals forming the swarm are

generated from the same genotype). This method has the advantage of being simple and compact with

respect to the number of free parameters, since the parameters of all individuals are encoded in the same

genes. Moreover, it eliminates the problems related to the identification of the individual contributions

to the performance produced by the entire swarm, and removes the conflict of interest that might arise

between genetically different individuals, as discussed in the following section.
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In heterogeneous group, the swarms is constituted by individuals generated by different genotypes or

by different parts of the same genotype. The use of heterogeneous groups might be advantageous when

the robots forming the group should play well differentiated roles. In this case, however, the different roles

must be somehow encoded into the genotype. The simplest approach consists in a priori defining how

many roles are necessary (at most, one role per robot in the group), and encoding in a single genotype

all the parameters of all controllers. Alternatively, the robots might be genetically identical, but might

express different parts of their genome [4]. These approaches allow to evolve tightly cooperating teams,

at the cost of substantially increasing the search space for the evolutionary algorithm. In order to reduce

the search space, heterogeneous teams can be obtained from controllers evolved in different populations,

which are updated in parallel. Each population is therefore dedicated to a specific role, and teams are

formed by drawing from the different population with a certain strategy. Eventually, the best individual

of each population is the representative of the corresponding role. A similar approach can be instantiated

with a single population of genotypes: here, different roles are drawn from the same population. However,

in this case, a strong convergence of the population would result in rather homogeneous teams. It would

be required to use some technique to maintain enough diversity in the population, which would result in

niches adapted to the required roles. In both cases, however, it is challenging to identify an effective way

to assign the fitness to the different genotypes forming a team, as discussed below.

2.3 Behavioural selective pressures: the fitness function

The definition of the performance metric that rewards the desired behaviour is usually task-dependent

(i.e., a function that estimates the extent to which the swarm solves the given task).2 There are multiple

ways to define a fitness function for a given problem [25]. To discriminate between different types,

Floreano and Urzelai proposed the usage of a three-dimensional fitness space, in which the different

dimensions refer to important features of a fitness function [11]:

functional vs. behavioural: a functional fitness rewards a particular working modality (i.e., gives

an indication on the actuators outputs), while a behavioural fitness measures the quality of the

behaviour (i.e., gives an indication about the outcome of a sequence of actions);

external vs. internal: an external fitness is computed through variables that are available to an exter-

nal observer (i.e., the absolute position of the robot in the environment), while an internal fitness

is computed through variables available to the robot (i.e., the sensor readings). While external

fitness functions can be easier to deploy, internal ones may reduce possible biases introduced by the

designer;

2For alternative approaches based on task-independent fitness function or combination of the two, see [30, 16, 15, 33],
already mentioned in Section 1.



9

explicit vs. implicit: an explicit fitness measures the way in which a goal is achieved (i.e., the trajectory

performed to get close to a light source), and therefore puts constraints on the displayed behaviours.

An implicit fitness function, instead, measures the level of attainment of a goal (i.e., how close to

the light source the robot ends). An implicit fitness gives more freedom to explore the solution

space, therefore allowing to find solutions that are not a priori envisioned by the experimenter.

In swarm robotics, the indirect relationship between individual actions and group organisation makes

it difficult to devise functional measures. A functional measure, in fact, is directly related to the causes

of the observed behaviour, which are a priori unknown to the experimenter. Similarly, internal fitness

functions may be more difficult to devise, given that they require the evaluation of the group behaviour

from the perspective of the individual robots. However, a common approach is to devise an internal fitness

function that is measured on each robot taking part to the experiment, obtaining individual fitness values

that are aggregated either averaging over the group or selecting the best or the worst performing robot.

In this way, it is possible to obtain a group measure starting from internal variables. This can be done

only if the individual measure is directly related to the global organisation. Finally, implicit measures

should be preferred when the relationship between the individual control rules and the group behaviour is

indirect or unknown, as they pose less constraints on the way the desired collective behaviour is achieved.

In evolutionary swarm robotics, it is often the case that a homogeneous group of robots should

present a self-organising behaviour. In this case, it is useful to evaluate the group level properties

through external fitness functions, rather than looking at the individual actions. It is also useful to

evaluate the group organisation (i.e., the spatio-temporal pattern), rather than the way in which the

organisation is achieved, resorting to implicit metrics. In fact, external and implicit fitness functions pose

less constraints on the way in which the problem should be solved. On the contrary, if we consider the

case in which a heterogeneous group should display a teamwork with highly specific roles, internal and

explicit metrics could be preferred, as they may allow to develop the implementation details of specific

solutions beforehand identified.

The use of heterogeneous swarms constituted by individuals generated from different genotypes pose

additional constraint on the definition of the fitness function since it requires to estimate the contribution

of genetically different individuals to the overall ability of the group. Without going too deep into

the details, it is important here to notice that this problem does not affect homogeneous groups and

heterogeneous teams generated from a single genotype. In these cases, in fact, the group performance can

be directly assigned to the single genotype that generated the entire swarm. Whenever the group members

correspond to different genotypes, it is necessary to deploy a fitness function that directly measures the

individual contribution. When this is not possible, the fitness of a single genotype must be evaluated by

forming multiple groups, choosing the teammates randomly or with a specific strategy in order to have a

good estimate of the individual contribution to the group performance. The latter, however, is a complex
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and time-consuming procedure, which adds further uncertainty over the estimation of the genotype fitness

in varying environmental conditions, as discussed below. It is also worth mentioning that the use of

heterogeneous groups constituted by genetically different individuals and the use of fitness functions that

estimate the performance at the level of the single individuals tend to cause conflicts of interest between

the individuals forming the group, which might prevent the evolution of stable coordinated/cooperative

behaviour [10, 20, 40].

2.4 Ecology

The ability of a swarm to perform a certain task does not depend only on the characteristics of the robot,

but is also influenced by the characteristics of the environment (e.g., variability in space and time) and

by the relation between the robots and the environment (e.g., the set of possible initial positions and

orientations of the robots within the environment). The behaviour of the swarm should be robust with

respect to possible variations of the environment and of other parameters that contribute to define the

ecological niche in which the behaviour is evolved. Indeed, the definition of the ecological niche of the

robotic system can significantly affect the results of the evolutionary process [27]. A precise computation

of the fitness would require testing the behaviour systematically for every possible environmental condition

in which the robot may find itself. This is normally not feasible, and therefore it is necessary to sample the

space of the possible ecological conditions in an appropriate way, in order to obtain a reasonable fitness

estimate. In a collective robotics setup, the problem is worsened by the presence of multiple robots, which

increase the variability of the ecological niche. Interaction among individuals, physical interferences and

collisions among robots may be very relevant to the accomplishment of the task, requiring the definition of

experimental conditions that can let the group experience the interaction patterns relevant for obtaining

a robust behaviour.

It is important to notice that indirect selective pressures may be created through the definition of

the ecological niche and through the sampling employed to estimate the fitness. Given that the group is

evaluated for presenting a robust behaviour within the parameter space of the ecological niche, the choice

of the sampling may influence the evolutionary path. For instance, in [2] communication and cooperation

emerge solely due to ecological selective pressures, as the fitness function does not contain any indication

about cooperative strategies. Thus, the ecological niche and the sampling of the parameter space must

be appropriately defined in order to account for robust group behaviour and to take into account implicit

selective pressures.

A final issue to consider concerns symmetry breaking, which pertain many collective phenomena.

Symmetry breaking refers to the situation in which a system passes from a disordered condition (which is

symmetric in the sense that small changes do not change the overall appearance) to a more ordered one,

characterised by some structure or pattern. For instance, a group of robots may pass from a disordered
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(symmetric) condition in which all robots are randomly oriented to a ordered one in which all robots have

the same orientation. Symmetric conditions in a collective robotic system must be carefully identified:

symmetry breaking may not be possible exploiting the inherent randomness of the robotic system, and

therefore suitable behavioural strategies may be required. The evolutionary machinery needs to encounter

such conditions often in order to synthesise the collective behaviour necessary to break the symmetry. For

this reason, it is necessary to force the system into symmetric conditions, as well as into asymmetric ones,

to evolve robust behaviours. An example of systematic testing in symmetric and asymmetric conditions

for a two-robot system is given in [1].

3 The engineering design cycle in evolutionary robotics

An attentive setup of the evolutionary experiments does not guarantee the achievement of the desired

results. In fact, some choices, although reasonable without any a priori knowledge of the evolutionary

dynamics, may turn out to be too constraining, or may prevent the system to display certain proper-

ties. However, negative results should be exploited to acquire information on the system dynamics and

re-engineer hand-designed characteristics accordingly. In fact, by understanding the properties of unsuc-

cessful results it may be possible to recognise which are the critical aspects that constrain the system in

sub-optimal solutions. As a consequence, it is possible to proceed with an informed re-engineering of the

evolutionary experiments.

This iterative process is not any different from any engineering design cycle. We can highlight three

main phases: (i) setup of the evolutionary experiment, (ii) the actual evolution and (iii) the analysis of

the results. In the setup phase, all the relevant choices are taken to devise the evolutionary experiment,

as discussed above. The setup phase is fundamental within the design cycle. Here, the expertise of

the experimenter is of utmost importance to orient the evolutionary design in the right direction. The

main goal of this phase is recognising which are the free parameters of the system that must be specified

beforehand, and which are the ones that will be subjected to evolution (i.e., through variation and selective

reproduction). In doing so, there are anyway many choices that are performed somehow arbitrarily,

especially when there is no a priori knowledge available about the system and evolutionary dynamics.

In the evolution phase, a sufficient number of instances (or replications) of the evolutionary experiment

are performed, each starting with a different random population of genotypes. On the one hand, multiple

instances increase the chances of finding an optimal solution to the given problem. On the other hand,

the quality of the design choices can be verified by looking at the percentage of instances that produced

good results. In the best case, all instances of the experiment produce acceptable results. Instead, a small

percentage of successful instances might indicate that there is room for improvement (i.e., the setup of

the evolutionary experiments can be modified in order to increase the quality of the evolved solutions).
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Also, a sub-optimal solution may reveal that some features of the robotic system defined in the setup

phase hinder the production of the desired behaviour.

Many ER practitioners just cycle between the setup and evolution phases, exploiting intuition and

experience in adapting the evolutionary setup to obtain better results. Less frequently, an attentive

analysis of the negative results obtained in previous iterations is performed to identify the critical aspects

of the evolutionary design. We believe that the analysis phase should be always conducted, and suitable

methodological tools developed, in order to support the re-engineering of the evolutionary experiment

toward promising directions. Two possible analyses should be conducted to guide the evolutionary process

towards the desired results. First, the analysis of the selective pressures and of the evolutionary dynamics

can inform the experimenter about the limits of the system in producing better and better solution starting

from scratch. Second, the evolved sub-optimal solutions should be analysed to acquire knowledge about

the characteristics of the robotic system and of the produced behaviour, in order to understand whether

or not it can display the desired properties. In this case, generalisation tests should be performed to

verify the ability of the system to work in conditions not experienced during the evolutionary phase. In

fact, during evolution is not always possible to test all the conditions that can be faced by the robotic

system. Therefore, it is important to test the robustness to failures, flexibility to varying environmental

conditions, or the scalability to larger groups. In the following section, similar analyses are performed

to understand the properties of the evolved system with respect to the scalability to larger groups. In

this case study, the design cycle is closed by re-engineering the communication channel in order to obtain

better scalability and better performance, which result also in more robust evolutionary dynamics.

4 Case study: self-organised synchronisation

Self-organised synchronisation is a common phenomenon observed in many natural and artificial systems:

simple coupling rules at the level of the individual components of the system result in an overall coherent

behaviour [34]. A well known synchronisation phenomenon is the flashing behaviour of some firefly species

in South-East Asia, which aggregate at dusk and engage in massively synchronous displays [5]. Models

of this behaviour describe fireflies as a population of pulse-coupled oscillators with equal or very similar

frequencies. These oscillators can influence each other by emitting a pulse that shifts or resets their

oscillation phase. The numerous interactions among the individual oscillator-fireflies are sufficient to

explain the synchronisation of the whole population (for more details, see [5, 21, 35]). This model has

been often exploited to engineer systems capable of synchronous behaviour, also in collective and swarm

robotics [41, 6]. In this study, we have investigated which are the minimal behavioural and Communicative

conditions that can lead to synchronisation in a group of robots, in which each individual presents a

periodic behaviour. For this purpose, we chose to provide robots with simple reactive controllers and
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basic communication abilities. The period and the phase of the individual behaviour are defined by the

sensory-motor coordination of the robot, that is, by the dynamical interactions with the environment

that result from the robot embodiment. We show that such dynamical interactions can be exploited for

self-organised synchronisation, allowing to keep a minimal complexity of both the behavioural and the

communication level (for more details, see [38]).

4.1 Phase 1: Evolutionary Setup

We make use of a simple evolutionary algorithm that works on a population of 100 binary genotypes,

which are randomly generated. Each genotype is a string of bits that encode some parameters of the

robotic system. Once the fitness of each genotype in the population has been evaluated, a new population

is produced by a combination of selection with elitism and mutation. Recombination is not used. At each

generation, the four best individuals of the population—i.e., the elite—are retained in the subsequent

generation. The remainder of the new population is generated by the 20 individuals of the previous

generation that scored the highest fitness. Each selected genotype reproduces at most 5 times by applying

mutation with 3% probability of flipping a bit. The evolutionary process runs for 500 generations.

The evolutionary experiments are performed in simulation, using a simple kinematic model of the

s-bot robot (see Fig. 1a,b and refer to [24] for details), and the results are afterwards validated on the

physical platform. The experimental scenario for the evolution of self-organising synchronisation requires

that each robot in the group displays a simple periodic behaviour, which should be entrained with the

periodic behaviour of the other robots present in the arena. The individual periodic behaviour consists in

oscillations along the y direction of a rectangular arena (see Figure 1c). Oscillations are possible through

the exploitation of a symmetric gradient in shades of grey painted on the ground. The gradient presents

a white stripe for |y| < 0.2 m, and black stripe for |y| > 1 m.

Place Figure 1 about here.

4.1.1 Sensory-motor system

For the purpose of engineering the evolutionary system, both the characteristics of the arena and the ca-

pabilities of the robots give several constraints to the experimental setup. According to these constraints,

we select among the various possibilities the minimal set of sensors and actuators that are required to

accomplish the task, that is, individual periodic oscillations over the grey gradient and synchronisa-

tion of the oscillation phase. Certainly, the controller needs access to the wheels’ motors, and we set

ωM ≈ 4.5 s−1 as the maximum angular speed of the wheels. The grey gradient of the arena can be

perceived by the robots through four infrared sensors placed under their chassis (ground sensors), which

are appropriately scaled to encode the grey-level in the range [0, 1], where 0 corresponds to black and 1 to
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white. The perception of the gradient through these sensors provides the robot with enough information

to perform oscillations along the y axis. Additionally, robots need to use the infrared proximity sensors

placed around their cylindrical body, in order to avoid collisions with walls or with other robots. These

choices, which are mainly constrained by the arena setup and by the features of the physical robot, are

sufficient for the individual behaviour.

For what concerns the group behaviour, instead, we need to provide the robots with suitable interac-

tion modalities that can lead to synchronisation of their movements. The choice of the communication

system is the aspect we focus on in this paper. In fact, the s-bot platform features various communica-

tion devices, and we need to select among them the one that best fits our experimental scenario. Robots

are provided with speakers and microphones for sound communication. Moreover, robots can exploit

coloured LEDs positioned around their turret to display a colour pattern that can be perceived through

the omni-directional camera. Finally, robots have wireless communication abilities. Therefore, there is a

large freedom in choosing the communication system. In order to maintain a minimal configuration, we

decided to provide the robots with a global and binary communication system:

s(t) = max
r

Sr(t), (1)

where Sr(t) ∈ {0, 1} is the binary signal emitted by robot r at time t, and s(t) ∈ {0, 1} is the binary

signal perceived by all robots. In other words, each robot r can produce a signal Sr(t). Signals produced

by different robots cannot be distinguished, and result in a single signal s(t) perceived by every robot in

the arena, including the signalling one. Signals are perceived in a binary way: either there is someone

signalling in the arena, or there is no one. This communication channel is probably the poorest one in

terms of the amount of information that can be conveyed. However, this is sufficient for our purposes,

as we will see in the following. Note that this communication channel can be easily implemented with

sound signals: a robot can emit a single frequency tone with an intensity high enough to be perceived

everywhere in the arena. Additionally, it is worth mentioning that, differently from the other sensors and

actuators, the choice of the communication system is not constrained by the robotic hardware or by other

aspects of the experimental setup, but is only dictated by the communication system we have chosen.

4.1.2 Genotype-to-phenotype mapping

As mentioned below, in self-organising synchronisation all individuals are (nearly) identical and display

the same behaviour. Synchronisation emerges from the interactions among individuals which adapt

their behaviour in order to entrain with each other. This feature constrains the genotype-to-phenotype

mapping to produce a homogeneous group of robots. To do so, the genotype is mapped into a single

control structure, which is cloned and downloaded onto all the robots taking part in the experiment.
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The control structure chosen is a fully connected, feed forward neural network—a perceptron network.

The choice of this type of neural network stems from our working hypothesis, that is, searching the min-

imal complexity of the control and communication system that can support synchronisation behaviours.

For this purpose, we choose a controller that directly transforms the sensory input into the motor output,

without recurrent connections or internal states. The neural network has 11 sensory neurons directly

connected to 3 motor neurons. The sensory neurons are simple relay units and the output neurons are

sigmoid units whose activation is computed as follows:

Oj = σ

(

∑

i

wijIi + βj

)

, σ(z) =
1

1 + e−z
, (2)

where Ii is the activation of the ith input unit, βj is the bias term, Oj is the activation of the jth output

unit, wij is the weight of the connection between the input neuron i and the output neuron j, and σ(z) is

the sigmoid function. Six sensory neurons—I1 to I6—receive input from a subset of the infrared proximity

sensors evenly distributed around the s-bot ’s turret. Four sensory neurons—I7 to I10—are dedicated to

the readings of the four ground sensors. The state of all infrared and ground sensors is linearly scaled

to the range [0.0, 1.0]. A simulated uniform noise within 5% of the input range is also added. The

last sensory neuron I11 receives a binary input corresponding to the perception of sound signals. The

activation states of the first two motor neurons—O1 and O2—is scaled onto the range [−ωM , +ωM ], where

ωM is the maximum angular speed of the wheels (ωM ≈ 4.5 s−1). The third motor neuron controls the

speaker in such a way that a sound signal is emitted whenever the activation state O3 is greater than 0.5.

The connection weights wij and bias terms βj are the genetically encoded parameters. Each parameter is

represented with a 8-bit binary code mapped onto a real number ranging in [−10, +10]. In other words,

we have a direct encoding of the genotype into the phenotype, as there is a bijective function that relates

the genotype to the phenotype.

4.1.3 The fitness function

The performance of a genotype is evaluated by a 2-components function: F = 0.5 ·FM + 0.5 ·FS ∈ [0, 1].

The movement component FM simply rewards robots that move along the y direction within the arena at

maximum speed. With respect to the taxonomy introduced in Section 2.3, this component is behavioural,

external and implicit. In fact, it rewards the movements of the robot from the observer perspective,

without explicitly indicating how to perform a periodic behaviour: the oscillatory behaviour derives

from the fact that the arena is surrounded by walls, so that oscillations during the whole trial are

necessary to maximise FM. The second fitness component FS rewards synchrony among the robots as

the cross-correlation coefficient between the distance of the robots from the x axis. Also this component

is behavioural, external and implicit : it is related to the group behaviour, and measures a quantity—the
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cross-correlation—that is available only to the observer. In addition to the fitness computation described

above, two indirect selective pressures are present. First of all, a trial is stopped when a robot moves

over the black-painted area, and we assign to the trial a performance F = 0. In this way, robots are

rewarded to exploit the information coming from the ground sensors to perform the individual oscillatory

movements. Secondly, a trial is stopped when a robot collides with the walls or with another robot, and

also in this case we set F = 0. In this way, robots are evolved to efficiently avoid collisions. For more

details on the fitness computation, refer to [38].

4.1.4 The ecology

The ecology in which the group behaviour evolves need also to be defined. The arena is a rectangle of

6 × 3 m sides, completely surrounded by walls. The ground is painted in white for |y| < 0.2 m, and

linearly changes to black until |y| = 1 m. For larger distances, the arena is painted in black. We are

interested in behavioural and communication strategies that scale well with the group size. However, it

is not possible to test every possible group size, and we therefore decided to fix the number of robots

in the group to just three robots. This low number of robots allows to obtain fast simulations, and still

support the evolution of group coordination. In order to have a good estimate of the group performance,

the genotype fitness is the average of the group fitness computed over 10 different trials. In each trial, we

vary the initial positions and orientations of the three robots by choosing them uniformly random within

the arena. This allows to let the robots experience many different initial conditions, and should result in

robust and efficient synchronisation behaviours.

4.1.5 Design and evolution

Before presenting the obtained results, it is useful to discuss which are the features that are fixed by

the experimenter, and those that are adaptively set by the evolutionary process. We have defined an

experimental scenario that is intrinsically cooperative, because robots are homogeneous and are explicitly

rewarded to display a desired group behaviour. We have also fixed the sensory-motor configuration and

the controller architecture. In particular, we have fixed the interaction modality between different robots,

which mainly happens through the binary and global communication signal. Notwithstanding this, the

motor and communicative behaviour is not at all pre-determined, but it is the result of the evolutionary

process. The individual behaviour and the synchronisation mechanisms are completely determined by

the parameters of the neural controller (i.e., connection weights and biases). Individual behaviour and

communication signals co-evolve and mutually influence: the individual behaviour determines how the

robot moves and experience the environment, which influences the signals emitted. In turns, perceived

signals change the way in which the robot reacts to the environment. During evolution, the group

behaviour is shaped in order to maximise the user-defined utility metric, within the constraints imposed



17

by the pre-determined features. In the following, we will see how the communication channel we have

chosen influences the obtained results.

4.2 Phase 2: Evolution

In order to test the robustness of the evolutionary setup we devised, we decided to run 20 different

instances of the experiment. Each instance was initialised with a different randomly generated population

of genotypes, and lasted 500 generations. At the end of the evolutionary process, to assess the quality of

the evolved behaviours, we select a single genotype per instance to be chosen among the best individuals

of the final generation. To do so, we evaluate the performance of the 20 best individuals of the final

generation in 500 different trials, and we choose the individual with highest average fitness. In the

remainder of the paper, we refer to the best controllers evolved in replication i as ci, i = 1, .., 20. The

performance of these controllers over the 500 post-evaluation trials, sorted according to decreasing median

values, is shown in Figure 2. The obtained results show that in most replications the performance obtained

is in average within the interval [0.7, 0.9], which indicates that robots are able to maximise both the

movement fitness component, FM, and the synchronisation component, FS .

In order to assess the difference in performance among the controllers evolved in different evolution-

ary replications, we used the performance data recorded over 500 trials to perform a series of pairwise

Wilcoxon tests among all possible controller couples. The results are plotted in Figure 2 as vertical lines

spanning over the controller numbers having a performance that is not statistically different (at 99%

confidence). So, for example, controllers c13 and c15 are not statistically different from the performance

point of view. Similarly, controller c1 has a performance equivalent to c18 and c19, but it performs worse

than controllers c10 and c14. As can be seen in Figure 2, controller c8 outperforms all other controllers.

The fitness values just tells us that the system is able to maximise the performance metric we devised.

It does not tell us if and how synchronisation is achieved, and whether or not the system presents desired

properties like robustness or scalability. For this purpose, we performed behavioural and scalability

analyses, which are discussed in the following section.

Place Figure 2 about here.

4.3 Phase 3: Analysis

By looking at the behaviour exhibited by a group of three robots, we observed that each instance of

the evolutionary experiment produced a successful synchronisation behaviour, in which robots display

oscillatory movements along the y direction and synchronise with each other, according to the require-

ments of the devised fitness function. In general, it is possible to distinguish two phases in the evolved
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behaviours: an initial transitory phase during which robots achieve synchronisation, and a subsequent

synchronised phase. The transitory phase may be characterised by physical interferences between robots

due to collision avoidance, if robots are initialised close to each other. The collision avoidance behaviour

performed in this condition eventually leads to a separation of the robots in the environment, so that

further interferences to the individual oscillations are limited and synchronisation can be achieved. The

synchronous phase is characterised by a stable synchronous oscillation of all robots, and small deviations

from synchrony are immediately compensated.

The individual ability to perform oscillatory movements is based on the perception of the gradient

painted on the arena floor, which gives information about the direction parallel to the y axis and about

the point where to perform a U-turn and move back towards the x axis, therefore avoiding to end up

into the black painted area. Each evolved controller produces a signalling behaviour that varies while the

robots oscillate. The main role of the evolved signalling behaviour is to provide a coupling between the

oscillating robots, in order to achieve synchronisation. In response to a perceived signal, robots react by

moving in the environment, changing the trajectory of their oscillations. This results in a modulation of

the oscillation amplitude and frequency, which allows the robots to reduce the phase difference among

each other, and eventually synchronise. In a previous work [38], we developed a mathematical model and

exploited dynamical systems theory to thoroughly analyse the synchronisation behaviour. We invite the

reader to refer to that work for further details on the synchronisation mechanism, which are out of the

scope of the present paper.

Once analysed the synchronisation behaviours evolved using three robots only, we tested scalability

to large groups. To do so, we compared the performance of the evolved behaviour varying the group

size. To avoid overcrowding, we performed the scalability analysis in larger arenas, ensuring a constant

density of robots across the different settings. By ensuring a constant initial density we limit the negative

effects of overcrowding and we are able to compare the performance of robotic systems with varying group

size. In order to keep a constant robot density equal to the one used in the evolutionary experiments,

we lengthened the arena in the x direction, trying to keep a uniform initial density of 0.25 robots per

square meter. Despite the increased arena length, we still keep the same communication system, that

is, communication continues to be binary and global, with all robots affecting each other. This choice

allows us to evaluate the scalability of a behaviour as it was evolved, without modifying the features of

the communication channel. We evaluated all best evolved controllers 100 times using six different group

sizes (3, 6, 12, 24, 48 and 96 robots). The obtained results are presented in the top part of Figure 3.

It is possible to notice that most of the best evolved controllers have a good performance for groups

composed of 6 robots. Performance degrades for larger group sizes and only few controllers produce

scalable behaviours up to groups formed by 96 robots. The main problem that reduces the scalability of

the evolved controllers is given by the physical interactions among robots. Despite the constant initial
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density we introduced in order to limit the disruptive effect of collision avoidance, physical interactions

nevertheless occur with a higher probability per time step, as the group size increases. Every collision

avoidance action provokes a temporary desynchronisation of at least two robots, which have to adjust

their movements in order to re-gain synchronous oscillations with other robots. In such cases, the whole

group is influenced by the attempt of few robots to re-gain synchronisation, due to the global and binary

communication.

Place Figure 3 about here.

To summarise, the above analysis showed that physical interactions and collision avoidance have a

disruptive effect on the synchronisation ability of the robots, and this effect is more and more visible as

the group size increases. However, the synchronisation mechanism evolved may scale with the group size

if we ignore physical interactions. To test this hypothesis, we performed an identical scalability analysis,

but in this case we ignore the physical interactions among the robots, as if each robot was placed in a

different arena and perceived the other robots only through communication signals. The obtained results

are plotted in the bottom part of Figure 3. Differently from what was observed above, in this case many

controllers present good scalability, with only a slight decrease in performance due to the longer time

required by larger groups to perfectly synchronise (namely, controllers evolved in replication number

2, 8, 10, 12, 14, 18 and 19). This result confirms the analysis about the negative impact of physical

interferences and collisions among robots. In fact, removing the necessity to avoid collisions leads to

scalable self-organising behaviours.

Nevertheless, many other controllers present a strange behaviour (namely, controllers evolved in repli-

cation number 3, 4, 7, 9, 11, 13, 15, 16, 17, 20). It is possible to notice that the performance presents

a high variability up to a certain group size. The variable performance indicates that in some cases the

robots are able to synchronise, and in other cases not. With larger group sizes, the performance stabilises

to a low, constant value, independent from the initial conditions and the number of robots used. This

value, which is characteristic of each non-scaling controller, represents the performance of the robotic

system trapped into the basin of an incoherent attractor. In other words, the robotic system always

converges into a dynamical condition in which no robot can synchronise with any other. By observing

the actual behaviour produced by these controllers, we realised that the incoherent condition is caused

by a communicative interference problem: the signals emitted by different robots overlap in time and

are perceived as a constant signal (signals are global and are perceived in a binary way, preventing a

robot from recognising different signal sources). If the perceived signal does not vary in time, it does not

bring enough information to be exploited for synchronisation, and the system remains desynchronised.

This result is confirmed by the dynamical system analysis that we performed, which revealed how the

individual signalling behaviour is responsible for producing such communicative interference, allowing
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also to predict which controllers present scalability just looking at the individual behaviour (for more

details, see [38]).

4.4 Re-engineering for scalability

The analysis of the unsuccessful controllers revealed that scalability cannot be always obtained, due to the

physical and communicative interferences among robots. In particular, the communication channel we

selected has a strong impact on the scalability of the system. In fact, communication is global and binary,

that is, the signal emitted by a robot is perceived by any other robot everywhere in the arena. Moreover,

from the robot point of view, there is no difference between a single robot and a thousand signalling at

the same time. Therefore, a single robot can influence the whole group. This has no negative effect as

long as robots are synchronous, but can have severe consequences when a robot modifies its behaviour

due to collision avoidance following some physical interaction with other robots. Furthermore, the binary

communication channel generates the communicative interference we described above, which prevents the

group from synchronising in certain conditions.

The main problems are therefore related to the absence of locality—i.e., signals are perceived every-

where in the arena—and of additivity—i.e., signals overlap without adding, preventing to recognise how

many robots are contemporaneously signalling. The lack of locality and additivity is the main cause of

failure for the scalability of the evolved synchronisation mechanisms.3 We therefore decided to re-engineer

our evolutionary experiments changing the communication system, which was arbitrarily chosen in the

first place. Given that we are interested in studying global synchronisation, we decided to re-engineer our

experiments focusing only on the additivity of the communication system. This allows us to make only

minor changes to the experimental setup and directly compare the effects of the re-engineering approach.

We evolved self-organising synchronisation behaviours exploiting exactly the same setup as above,

but changing the way robots signal and perceive emitted signals. Specifically, we change the binary

communication system with a continuous one:

s̃(t) =
1

N

N
∑

r=1

S̃r(t), (3)

Now, robots always emit a signal S̃r(t) ∈ [0, 1], encoding a number in a continuous range. The emitted

signals are perceived as the average s̃(t) among all the perceived signals. By doing so, the influence of an

individual robot on the global perceived signal—which is equal for all robots in the arena—depends on

the signalling behaviour of the whole group: the bigger the group, the smaller the influence of the single

individual. This communication channel can be easily implemented on the s-bots. For instance, signals

could be sent as messages over the wireless network containing a real number in [0,1]. On the basis of

3However, as we have seen, this problem affects only some of the analysed controllers.
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the analysis performed so far, we expect that self-organising synchronisation behaviours can be evolved

with such a communication system, and that these are more scalable.

Place Figure 4 about here.

Also in this case, we executed 20 instances of the evolutionary experiments, using groups of three

robots. All replications were successful, and produced synchronisation behaviours that are qualitatively

similar to those obtained with the binary communication system: robots perform oscillations over the

painted gradient and react to the perceived signal by modifying the individual behaviour, in order to

synchronise with other robots. We therefore executed a scalability analysis, which was performed with

the same modalities as described above, and the obtained results are presented in Figure 4.

In the upper plot, scalability is tested including physical interactions. Also in this case, we notice

that collisions prevent the scalability of some controllers, in which a good avoidance behaviour was not

evolved. Recall that when a collision is detected, the group scores a null performance. However, it

is possible to notice that the usage of an additive communication system leads to better performance

even with large groups. Most controllers present good scalability for every tested group size, and only

collisions substantially reduce the performance. Here, differently from what was observed before, physical

interactions and collision avoidance do not have a severe impact on the performance of the whole group. In

fact, the signals of few non-synchronous robots are averaged with those emitted by the rest of the group.

As a consequence, the influence on the group of a single robot attempting to synchronise decreases

with increasing group size. This leads to a quick convergence to synchrony and to an improved group

performance.

To better understand the effects of the re-engineering approach, we also performed a scalability

analysis for the evolved synchronisation mechanisms, again removing the physical interactions among

robots. The results plotted in the lower part of Figure 4 show that all evolved synchronisation mechanisms

perfectly scale, and they do not suffer from the communicative interference observed with binary signals.

In fact, the perceived signal brings information about the average signalling behaviour of all robots. As a

consequence, synchronisation is always achieved, no matter the group size. Notice also that all controllers

present a linear decrease in performance in correspondence to an exponential growth of the group size.

This observation suggests that the self-organising synchronisation mechanism is very efficient, and is only

slightly affected by the group size.

5 Discussions and conclusions

Evolutionary Robotics can be a very useful methodology for the automatic synthesis of controllers for

robotic systems. This is especially true in the swarm robotics domain, which is characterised by an
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indirect, non-linear relationship between the control rules followed by an individual and the group be-

haviour. However, ER cannot be simply applied blindfold and effortlessly. Most importantly, ER does

not exclude arbitrary choices in setting up an experiments, which can strongly influence the outcome

of the evolutionary process. The advantage given by ER is that, despite such arbitrary choices, it can

find good or even optimal solutions for a given problem. However, much as in conventional engineering

methods, multiple design loops may be needed to find such optimal results. In this paper, we suggest

that a structured, formal approach to the design of experiments in evolutionary swarm robotics can be

very advantageous. On the one hand, we identified and discussed which are the relevant choices to be

performed in designing the setup of an evolutionary experiment in the context of swarm robotics. On the

other hand, we discussed the appropriateness of an engineering design cycle and showed its advantages

in a practical case study.

The case study we presented was about the evolution of self-organising synchronisation in a robotic

system. We showed that in setting up the experiments, some characteristics of the system were chosen

somehow arbitrarily, given that no a priori knowledge was available about the possible solutions to the

given problem. The results obtained with the initial experimental setup proved that self-organising

synchronisation can be actually achieved with a minimal complexity at the level of the control and

communication strategy. However, the analysis of the scalability results also pointed to some critical

aspects of the system that hindered the group from scoring a good performance. We identified the problem

in the communication system being global and binary, and to the effects of physical and communicative

interferences. To solve this problem, we re-engineered the arbitrarily-chosen communication system

exploiting the knowledge acquired by analysing the evolved behaviours. The newly devised continuous

signals resulted in better synchronisation behaviours, and in an optimally scaling communication system.

This paper demonstrates that it is possible to engineer some features of a system undergoing artificial

evolution on the basis of the outcome of the evolutionary process itself. Contrary to trial and error

methods without any guidance, we showed that an attentive analysis of negative results conveys knowledge

on how to modify the system for evolving better solutions. Note that this is not in contradiction with

respect to the need of little a priori knowledge in the design of the evolutionary experiment, as mentioned

in the introduction. In fact, the knowledge we put into engineering the evolutionary system should not

be related to the design of the solution, which is left to the evolutionary process, but rather to the

preconditions required for obtaining good solutions. This is a subtle but germane difference which should

be discussed further. When we put knowledge about the solution into the experimental design—either

explicitly in the fitness function or implicitly in the experimental setup—we try to constrain evolution

into a specific path. However, it may be very difficult to force the evolutionary dynamics and to obtain

the desired solutions. And it may also be the case that the obtained solutions are too specific for the

evolutionary conditions that have been defined, missing important features like robustness, flexibility
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and adaptivity. Additionally, if a specific behaviour is desired and known, it may be easier to engineer

it directly without relying on an automatic design methodology, and possibly use evolutionary methods

just for parameter tuning.

On the contrary, we propose an iterative engineering methodology that allows to exploit the knowledge

acquired from negative results and previous evolutionary experiments to define the preconditions for

obtaining better results. This does not mean forcing the system within specific evolutionary paths, but

it rather liberates evolution from constraining attributes of the experimental setup. In this way, the

solutions that can be generated should be more efficient, and should better generalise to conditions not

directly experienced during evolution.

As a final remark, it is worth discussing the choice of the swarm robotics domain for the proposal of

an engineering approach to ER. We actually believe that most of the methodological aspects mentioned

in this paper can be easily generalised to other domains. However, within swarm robotics a structured

and formal methodology is even more compelling. This is related to the idea of evolving self-organising

processes through guidance rather than control: swarm robotics has the additional complexity of dealing

with emergent systems, with emergent properties resulting from complex interactions among individuals.

In this case, knowing which are the degrees of freedom in setting up an experiment can be of utmost

importance, as well as knowing in advance which are the possible effects of certain choices. In future

work, theoretical and experimental studies should be conducted to devise a comprehensive methodological

framework for the design of ER systems: much like in the software engineering field, engineering practices

should be developed to guide the experimenter through the different phases of setup, evolution and

analysis of an evolutionary robotic system.
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sensory-motor system - selected sensors and actuators
- communication channels
- pre-processing of raw data

genotype-to-phenotype
mapping

- direct vs. indirect encoding
- genetic relatedness of the group (homogeneous vs. heterogeneous)

fitness function - functional vs. behavioural
- implicit vs. explicit
- external vs. internal

ecology - sampling of ecological conditions
- symmetry breaking

Table 1: The table summarises the relevant choices to be made in setting up an evolutionary experiment

within the swarm robotics domain. Refer to Sections 2.1 to 2.4 for more details.
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Figure 1: (a,b) The s-bot, the robot used in the experiments. (c) Snapshot of a simulation showing three

robots in the experimental arena. The dashed lines indicate the reference frame used in the experiments.
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Figure 2: Post-evaluation results of the best evolved controllers ci in each replication i = 1, .., 20 of

the evolutionary experiment. The performance is represented on the horizontal axis, and the controller

number on the vertical axis. The boxplot displays the whole dataset: each box represents the inter-

quartile range of the data, while the black vertical line inside the box marks the median value. The

whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the box.

The empty circles mark the outliers. Data from different controllers are sorted according to the median

value. Moreover, statistical similarities are represented as vertical bars spanning over the controller

numbers (see text for detail).
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Figure 3: Scalability analysis. The boxplot shows, for each evolved controller, the performance obtained

in tests with 3, 6, 12, 24, 48, and 96 robots. Each box represents the inter-quartile range of the data,

while the black horizontal line inside the box marks the median value. The whiskers extend to the most

extreme data points within 1.5 times the inter-quartile range from the box. Outliers are not shown. Top:

scalability of the evolved controllers under normal conditions. Bottom: scalability of the synchronisation

mechanism.
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Figure 4: Scalability analysis for the continuous communication system. Top: scalability of the evolved

controllers under normal conditions. Bottom: scalability of the synchronisation mechanism.


