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1 Introduction

Studies in collective robotics usually emphasise aspects like efficiency, robustness and flex-
ibility of the system. These are all desirable features for a robotic system, which however
do not come for free along with the distributed approach. Suitable design methodologies
must be devised to obtain similar features in a collective robotic system, both for what
concerns the robotic hardware and the control algorithms. In this chapter, we discuss the
problem of synthesising distributed controllers for a group of robots by using evolutionary
techniques.

The synthesis of a controller for a collective robotic system is a difficult problem, due
to the indirect relationship between the desired group behaviour and the individual control
rules. This is particularly true for self-organising behaviours, in which the spatio-temporal
pattern observed at the system level emerges from the numerous interactions among the
individual robots. A possible solution to the problem of designing for self-organisation
is given by automatic techniques, which can synthesise the robot controller basing on
some system-level utility metric defined by the user. Among the various machine learning
methodologies, Evolutionary Robotics (ER) represents a viable approach to the solution
of the design problem [Nolfi and Floreano, 2000, Trianni et al., 2008]. By evaluating
the robotic system as a whole (i.e., by testing the global behaviour that results from the
individual rules encoded into the individual genotype), ER provides an automatic process
for identifying the mechanisms that produce and support the collective behaviour, and
for implementing those mechanisms into the individual controller rules that regulate the
robot/environment interactions. To this aim, it is necessary to identify initial conditions
that assure the evolvability of the system, i.e., the possibility to progressively synthesise
better solutions [Wagner and Altenberg, 1996]. Evolvability depends on a number of
factors related both to the task to be faced and to the evolutionary algorithm in use. In
Section 2, we point to the most common factors and to the influence they may have on the
evolvability of the system. However, due to the high level of mutual dependency among
these factors, it is difficult to determine the outcome of a certain choice without reference
to the whole picture. For this reason, we present in detail a simple approach, which proved
particularly successful for the synthesis of self-organising behaviours. We also present in
Section 3 some case studies that demonstrate the possibility to evolve robotic systems
displaying coordination, self-organisation and collective decision making. Moreover, we
show how ER can be a powerful tool for the study of adaptive behaviour, communication
and cooperation [Harvey et al., 2005, Nolfi, 2005]. Various complexity levels can be added
to the basic system described above in order to evolve cooperative, cognitive behaviours in
a collective. For instance, the individual ability to integrate information over time makes
it possible to obtain complex group behaviours that can rely on both the individual and
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the group dynamics. In an evolutionary perspective, this can result in complex forms of
cooperation particularly adapted to the experimental scenario.

In conclusion, in this chapter we show how artificial evolution applied to collective
robotics can produce coordinated and cooperative behaviours. Future work in this direc-
tion should try to increase the complexity of the behaviours that can be evolved. There
are two possible directions, in our view: on the one hand, more complex behaviours can
be evolved by providing more capabilities and more structure to the individual controller.
In this case, complex individual behaviours support the cooperation between individuals,
for instance, through the development of a cooperative language that can help regulating
the inter-individual interactions. We believe that another, very promising and yet-to-
be-explored direction should fully rely on self-organisation. That is, capabilities of the
individual robot should be relatively simple, but the group behaviour should be the result
of the numerous interactions among individuals in the group. Brought to the limit, this
approach sees robots as extremely simple devices able to support with their interactions
complex cognitive behaviour at the group level.

This chapter is organised as follows: Section 2 describes the evolutionary approach to
collective robotics, indicating the main issues in the application of artificial evolution to
collective robotics (see Section 2.1), and presents a simple approach for the synthesis of self-
organising behaviours. In Section 3, the introduced theoretical framework is instantiated
in three case studies. Finally, Section 4 concludes the paper.

2 Evolutionary Methods in Collective Robotics

Evolutionary Robotics (ER) is an automatic approach for synthesising robotic systems
provided with desired features and behavioural abilities [Nolfi and Floreano, 2000, Harvey
et al., 2005]. ER is based on Artificial Evolution [Fogel et al., 1966, Holland, 1975, Schwe-
fel, 1981, Goldberg, 1989]. It is an adaptive process inspired by the Darwinian principles of
genetic variation and selective reproduction of the fittest: the individual that best adapts
to its environment has more chances to reproduce and pass its genetic material to the
subsequent generations. In this way, the species evolves toward better and better indi-
viduals. A similar process is exploited in the artificial counterpart, in which a population
of individuals, each representing a potential solutions to a given problem, is “evolved”
for many generations, until a good solution is found. In the following section, we briefly
introduce artificial evolution and we focus on its application to the collective robotics do-
main. In Section 2.2 we introduce a simple approach for the evolution of coordinated and
cooperative behaviours in a collective robotics setup.

2.1 The ER Approach

Artificial evolution is an unsupervised learning technique that operates on a population
of potential solutions to a given problem, which “evolve” under the selective pressure
enforced by a user-defined utility metric, thanks to the stochastic variability ensured by
the user-defined genetic operators. More specifically, each individual of a population,
generically called genotype, represents a solution for a given problem. Its fitness—i.e., the
quality of the solution—is automatically evaluated in each generation thanks to a user-
defined performance metric, usually referred to as fitness function. The best individuals
of the population, identified through a selection operator, are allowed to “reproduce” by
generating copies of their genotypes. The latter are modified using genetic operators,
such as crossover (sexual reproduction) or mutation (asexual reproduction). In this way,
the offspring is generated forming a new population that undergoes the same evaluation
process, until a valid solution is found.
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Figure 1: A schematic representation of the evolutionary robotics approach. Populations
of genotypes evolve for multiple generations (left part of the figure). The fitness of a
genotype is evaluated according to the behaviour of the corresponding robotic system—
either physical or simulated—which is evaluated in its environment (right part of the
figure). The evolutionary process can be run (i) in simulation, (ii) directly on the real
robotic platform or (iii) on a mix of the two. In this chapter, we evolve the behaviours in
simulation, and we validate the obtained results on the physical platforms.

In the case of ER, the general scheme described above must be adapted to produce solu-
tions for a robotics problem. Robots can be considered as autonomous artificial organisms
that evolve their skills in close interaction with their environment. An initial population of
artificial genotypes is created randomly, each genotype encoding some parameters of the
robotic system (see the generation zero represented in the top-left part of Figure 1). The
behaviour displayed by the robotic system is evaluated with respect to the user-defined
utility metric—the fitness function—that typically provides a reward commensurate with
the robot’s ability in solving the user defined task (right part of Figure 1). The best
genotypes are selected and reproduce according to the genetic operators, and the process
is iterated for a certain number of generations, or until the fitness of the individual robots
overcome a certain threshold. The main issue in applying artificial evolution to a robotic
setup is measuring the fitness associated to each genotype, which allows the evolutionary
machinery to produce better and better solutions. Generally speaking, in order to measure
the genotype fitness it is necessary to define (i) the mapping from the genotype to the
phenotype, along with the architecture of the controller, (ii) the performance metrics that
reward the desired behaviour (e.g., the actual fitness function), and (iii) the characteristics
of the environment in which the robots are evaluated, which contribute in defining the
ecological selective pressures.

2.1.1 Genotype-Phenotype Mapping and Robot Configuration

In evolutionary computing methods (including ER), a genotype is usually a string of bits
or real numbers that encode a potential solution to a given problem. In ER, the genotype
specifies the characteristics of a robotic system that should be able to display a desired be-
haviour. The experimenter therefore has to specify the genotype-to-phenotype mapping,
i.e., the rules or the processes that determine the relation between the genotype—the
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string of bits or numbers—and the phenotype—the robotic system. A widely used ap-
proach consists in encoding into the genotype a fixed number of parameters of the robot
controller (typically realized through an artificial neural network1), while keeping con-
stant the controller structure and the robot sensory-motor configuration. This is the most
common approach in the literature. Other approaches are possible, such as evolving the
controller architecture [Stanley and Miikkulainen, 2002], evolving both the controller and
the morphology of the robots [Sims, 1994, Lipson and Pollack, 2000]. With these instan-
tiations, ER can contribute to the field of developmental/epigenetic robotics by studying
the preconditions for the evolution of robotic systems that develop, adapt and learn new
abilities over time in close interaction with their environment (for a survey of develop-
mental robotics, see [Lungarella et al., 2003]). Another interesting approach consists in
evolving self-assembling and self-replicating robots. In this case, it is possible to avoid
specifying a fitness function, since evolution could be driven simply by the differential
ability of the robots to survive and replicate. To date, however, self-replicating embod-
ied agents have been demonstrated only through the use of hand-designed control rules
[Fukuda and Ueyama, 1994, Zykov et al., 2005], and only preliminary results have been
obtained exploiting evolution to synthesise the control rules that lead to self-replication
[Bianco and Nolfi, 2004, Mytilinaios et al., 2004].

In this chapter, we consider the case of a direct encoding from the genotype to the
phenotype, which is a neural network with fixed architecture. The sensory-motor configu-
ration of the robot is a priori fixed by the experimenter and therefore defines the abilities
of the robot to perceive and act in its environment. The genotype-to-phenotype relation
consists of a direct mapping in which each free parameter of the network is encoded into a
corresponding part (gene) of the genotype. This implies that artificial evolution operates
on the parameters that regulate the fine-grained interactions between the robot and the
environment, which in turn determine the behaviour exhibited by the robots.

In collective robotics, another characteristics that has to be determined concerns the
genetic relatedness between the individuals forming the group, that is, whether they are
genetically homogeneous (i.e., they are clones) or heterogeneous (i.e., they differ from
each other). In a homogeneous group, robots are identical in both the controller and
the sensory-motor configuration. In this case, robots might assume different roles (when
needed) by exploiting (i) situated specialisation (i.e., robots assume and maintain different
roles on the basis of the individual sensory-motor experience [Baldassarre et al., 2003]),
(ii) internal dynamics (i.e., robots assume different roles on the basis of internal states
of the controller resulting from the ability to integrate sensory-motor information over
time [Ampatzis et al., 2009]), and (iii) learning (i.e., roles are determined by the on-
line learning ability of the robot [Floreano and Urzelai, 2000]). When dealing with an
homogeneous group, the genotype usually encodes the parameters of a single controller,
which is copied in all the robots taking part into the experiment. In other words, a single
genotype generates the parameters of the controller for the whole group of robots. This
also simplifies the fitness assignment problem and eliminates conflicts of interest between
genetically different individuals, as discussed in the following section.

The evolution of genetically heterogeneous groups can lead to the differentiation of
the behaviour of the individual robots. This is potentially suitable for situations in which
the robots forming the group should play well differentiated roles that do not vary over
time. In this case, however, the different roles must be somehow encoded into the geno-
type. The simplest approach consists in a priori defining how many roles are necessary
(at most, one role per robot in the group), and encoding in a single genotype all the
parameters of all controllers. Alternatively, the robots might be genetically identical, but

1A different approach consists in evolving computer programs for autonomous robots (see the Genetic
Programming literature [Koza, 1992]).
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might express different parts of their genome [Bongard, 2000]. These approaches allow to
evolve tightly cooperating teams, at the cost of substantially increasing the search space
for the evolutionary algorithm. In order to reduce the search space, heterogeneous teams
can be obtained from controllers evolved in different populations, which are updated in
parallel. Each population is therefore dedicated to a specific role, and teams are formed
by drawing from the different population with a certain strategy. Eventually, the best
individual of each population is the representative of the corresponding role. A similar
approach can be instantiated with a single population of genotypes: here, different roles
are drawn from the same population. However, in this case, a strong convergence of the
population would result in rather homogeneous teams. It would be required to use some
technique to maintain enough diversity in the population, which would result in niches
adapted to the required roles. In both cases, however, it is challenging to identify an
effective way to assign the fitness to the different genotypes forming a team, as discussed
below.

2.1.2 Behavioural Selective Pressures: The Fitness Function

The definition of the performance metric that rewards the desired behaviour is usually
task-dependent. There are multiple ways to define a fitness function for a given problem.
In order to evaluate the quality of the fitness function, Floreano and Urzelai propose
the usage of a three-dimensional fitness space, in which the different dimensions refer to
important features of a fitness function [Floreano and Urzelai, 2000]:

functional vs. behavioural: a functional fitness rewards a particular working modality
(i.e., gives an indication on the actuators outputs), while a behavioural fitness mea-
sures the quality of the behaviour (i.e., gives an indication about the outcome of a
sequence of actions);

external vs. internal: an external fitness is computed through variables that are avail-
able to an external observer (i.e., the absolute position of the robot in the environ-
ment), while an internal fitness is computed through variables available to the robot
(i.e., the sensor readings). While external fitness functions can be easier to deploy,
internal ones may reduce possible biases introduced by the designer;

explicit vs. implicit: an explicit fitness measures the way in which a goal is achieved
(i.e., the trajectory performed to get close to a light source), and therefore puts
constraints on the displayed behaviours. An implicit fitness function, instead, mea-
sures the level of attainment of a goal (i.e., how close to the light source the robot
ends). An implicit fitness gives more freedom to explore the solution space, therefore
allowing to find solutions that are not a priori envisioned by the experimenter.

It is worth mentioning that recent approaches in the literature propose the usage of
task-independent fitness functions, in which the robots are rewarded using metrics that
give no indication about the final behaviour [Sperati et al., 2008, Prokopenko et al., 2006].
The only drive for obtaining a desired behaviours is represented here by ecological selective
pressures. This kind of fitness functions can be considered extreme cases that fall into the
implicit category.

In a collective robotics setup, the indirect relationship between individual actions and
group organisation makes it difficult to devise functional measures. A functional measure,
in fact, is directly related to the causes of the observed behaviour, which are a priori
unknown to the experimenter. Similarly, internal fitness functions may be more difficult to
devise, given that they require the evaluation of the group behaviour from the perspective
of the individual robots. However, a common approach is to devise an internal fitness
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function that is measured on each robot taking part to the experiment, obtaining individual
fitness values that are aggregated either averaging over the group or selecting the best
or the worst performing robot. In this way, it is possible to obtain a group measure
starting from internal variables. This can be done only if the individual measure is directly
related to the global organisation. Finally, implicit measures should be preferred when
the relationship between the individual control rules and the group behaviour is indirect
or unknown, as they pose less constraints on the way the desired collective behaviour is
achieved. Examples of the fitness functions that follow the above classification are given
in Section 3.

The definition of the fitness function is also influenced by the objectives of the exper-
imenter. For instance, consider the case in which a homogeneous group of robots should
present a self-organising behaviour: the collective behaviour should be the emergent re-
sult of the interactions among the individuals, which coordinate/cooperate to achieve a
common goal. In this case, it is useful to evaluate the group level properties through
external metrics, rather than looking at the individual actions. It is also useful to evaluate
the group organisation (i.e., the spatio-temporal pattern), rather than the way in which
the organisation is achieved, resorting to implicit metrics. In fact, external and implicit
fitness function pose less constraints on the way in which the problem should be solved.
On the contrary, if we consider the case in which an heterogeneous group should display
a teamwork with highly specific roles, internal and explicit metrics could be preferred,
as they may allow to develop the implementation details of specific solutions beforehand
identified.

Some constraints to the fitness function definition are also given by the genotype-
phenotype mapping. In particular, the way the group is formed can make it difficult
to clearly assign a fitness value to the involved genotypes. This problem affects mainly
teams, in which the individual contribution to the overall performance can significantly
vary among the group members. It is therefore necessary to define a methodology to fairly
estimate the individual contribution of each group member. Without going too deep into
the details, it is important here to notice that this problem does not affect homogeneous
groups and heterogeneous teams defined by one genotype. In these cases, in fact, the
group performance can be directly assigned to the single genotype that encodes all the
group controllers. Whenever the group members correspond to different genotypes, it is
necessary to deploy a fitness function that directly measures the individual contribution.
When this is not possible, the fitness of a single genotype must be evaluated by forming
multiple groups, choosing the teammates randomly or with a specific strategy in order
to have a good estimate of the individual contribution to the group performance. The
latter, however, is a complex and time-consuming procedure, which adds further uncer-
tainty over the estimation of the genotype fitness in varying environmental conditions, as
discussed below. It is also worth mentioning that the use of heterogeneous groups con-
stituted by genetically different individuals and the use of fitness functions that estimate
the performance at the level of the single individuals tend to cause conflicts of interest
between the individuals forming the group, which might prevent the evolution of stable
coordinated/cooperative behaviour [Floreano et al., 2007, Mirolli and Parisi, 2008, Waibel
et al., 2009].

2.1.3 Ecological Selective Pressures: The Environment Configuration

A typical problem of ER is the correct estimation of the performance of a genotype. The
fitness function should evaluate the quality of the robot behaviour with respect to some
variability of the environment. Typically, the behaviour must be robust with respect to
varying initial position and orientation of the robot, and with respect to other parameters
that contribute to define the ecological niche in which the behaviour is evolved. A precise
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computation of the fitness would require testing the behaviour systematically for every
possible environmental condition in which the robot may find itself. This is normally
not feasible, and therefore it is necessary to sample the space of the possible ecological
conditions in an appropriate way, in order to obtain a reasonable fitness estimate. In a
collective robotics setup, the problem is worsened by the presence of multiple robots, which
increase the variability of the ecological niche. Interaction among individuals, physical
interferences and collisions among robots may be very relevant to the accomplishment
of the task, requiring the definition of experimental conditions that can let the group
experience the interaction patterns relevant for obtaining a robust behaviour.

It is important to notice that indirect selective pressures may be created through
the definition of the ecological niche and through the sampling employed to estimate
the fitness. Given that the group is evaluated for presenting a robust behaviour within
the parameter space of the ecological niche, the choice of the sampling may influence
the evolutionary path. For instance, in section 3.3 we show how communication and
cooperation emerge solely due to ecological selective pressures, as the fitness function does
not contain any indication about cooperative strategies. Thus, the ecological niche and
the sampling of the parameter space must be appropriately defined in order to account
for robust group behaviour and to take into account implicit selective pressures.

A final issue to consider concerns symmetry breaking, which pertain many collective
phenomena. Symmetry breaking refers to the situation in which a system passes from a
disordered condition (which is symmetric in the sense that small changes do not change
the overall appearance) to a more ordered one, characterised by some structure or pat-
tern. For instance, a group of robots may pass from a disordered (symmetric) condition
in which all robots are randomly oriented to a ordered one in which all robots have the
same orientation. Symmetric conditions in a collective robotic system must be carefully
identified: symmetry breaking may not be possible exploiting the inherent randomness of
the robotic system, and therefore suitable behavioural strategies may be required. The
evolutionary machinery needs to encounter such conditions often in order to synthesise
the collective behaviour necessary to break the symmetry. For this reason, it is neces-
sary to force the system into symmetric conditions, as well as into asymmetric ones, to
evolve robust behaviours. An example of systematic testing in symmetric and asymmetric
condition for a two-robot system is given in [Ampatzis et al., 2009].

2.2 An Evolutionary Approach to Self-Organising Behaviours

As we have seen above, ensuring the evolvability of the system requires to identify which
are the conditions that can lead to the emergence of the desired behaviour. We have
pointed to various choices available to the designer, which mainly pertain the experimental
setup and the set of selective pressures that influence evolution. Each choice has certain
influences over the evolutionary process and the quality of the collective behaviour that is
afterwards obtained. In some cases, it is necessary to test different alternatives to obtain
the desired system features. Due to the high level of mutual dependency, it is difficult to
determine the outcome of a certain choice without reference to the whole picture. Instead
of attempting a comprehensive analysis of all the factors that can influence the evolution
of collective behaviour, we propose a simple approach that proved particularly suitable
for the evolution of simple and robust group behaviours that rely on self-organisation to
achieve the collective goal. This approach is based on the following choices:

neural network controllers: the robots’ controller is realized through an artificial neu-
ral network;

direct genotype-phenotype mapping: the genotype encodes the parameters of a neu-
ral network, which takes as input the perceptual information collected through the
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sensors, and directly controls the actuators of the robot;

homogeneity of the group: all robots share the same sensory-motor apparatus and the
same controller. In practice, all robots are identical copies;

minimal individual and communication capabilities: robots cannot rely on partic-
ularly powerful sensors, actuators or controllers. Sensors and actuators are noisy
and unreliable. Individual abilities are constrained by the possibilities offered by
of the neural network controllers and by the resulting sensory-motor coordination.
Communication is sub-symbolic and noisy;

fitness function: fitness is behavioural, external and implicit.

The rationale behind the above choices is explained below. First of all, neural networks
are capable of generalising to unexperienced conditions [Yao, 1999]. This aspect may play a
crucial role especially in collective robotics applications, where it is difficult to predict and
experience all possible configurations of the physical and social environment. The direct
genotype-phenotype mapping is the simplest, still most common and effective option. To
date, alternative methods have not proved more effective, and have not yet converged on a
clearly validated methodology [Nolfi and Floreano, 2000]. The use of homogeneous groups
leads to various advantages, as argued in the previous sections: it puts less constraints
on the solutions that can be obtained through the evolutionary process, allows situated
and temporary differentiation of roles, does not incur in credit assignment problems, and
avoids conflicts of interest between individuals [Baldassarre et al., 2003, Mirolli and Parisi,
2008]. Minimal control and communication capabilities favour the emergence of collective
behaviours that rely on individual sensory-motor coordination and on self-organisation.
Typically, similar solutions are not based on complex internal processing capabilities of the
individuals robots. Rather, they are the result of numerous interactions among relatively
simple individuals. We believe that, by providing minimal complexity at the level of the
individual capabilities, the evolutionary process is somehow forced to synthesise solutions
based on self-organisation [Trianni, 2008]. Similarly, the usage of behavioural, external and
implicit fitness function should maximise the chances to obtain solutions that rely on self-
organisation. For this purpose, the fitness function should reward the group organisation
(behavioural fitness) by relying on properties observable at the level of the group (external
fitness) and related to the attainment of a collective goal (implicit fitness). The absence
of a priori assumptions on the way the collective goal should be achieved opens the way
to the synthesis of self-organising behaviours. Finally, along with the homogeneity of the
group, the use of an external fitness creates the conditions for a group selection, which is
particularly useful for the emergence of cooperative behaviours [Floreano et al., 2007].

3 Studies on Self-Organising Behaviours

Following the guidelines described above, we have studied various collective behaviours
that involve coordination of activities, synchronisation, cooperation and emergent decision
making. In this section, we detail the experimental results obtained in three different
experimental setups: synchronisation and coordinated group behaviour in Section 3.1,
coordinated motion and emergent collective decisions in Section 3.2, and finally cooperative
categorisation in Section 3.3. In all cases, we highlight the self-organising features of the
evolved systems, and relate the obtained results to the experimental methodology we
propose.
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Figure 2: Left: the s-bot, the robot used in the synchronisation experiments. Right:
snapshot of a simulation showing three robots in the experimental arena. The dashed
lines indicate the reference frame used in the experiments.

3.1 Synchronisation

Self-organised synchronisation is a common phenomenon observed in many natural and
artificial systems: simple coupling rules at the level of the individual components of the
system result in an overall coherent behaviour [Strogatz, 2003]. In this study, we have
investigated which are the minimal behavioural and communicative conditions that can
lead to synchronisation in a group of robots, in which each individual presents a periodic
behaviour. Contrary to models of the self-organised synchronisation observed in some fire-
fly species, we do not postulate the need for internal dynamics [Mirollo and Strogatz, 1990,
Wischmann et al., 2006]. Rather, the period and the phase of the individual behaviour
are defined by the sensory-motor coordination of the robot, that is, by the dynamical
interactions with the environment that result from the robot embodiment. We show that
such dynamical interactions can be exploited for self-organised synchronisation, allowing
to keep a minimal complexity of both the behavioural and the communication level (for
more details, see [Trianni and Nolfi, 2009]).

Experimental setup The experimental scenario defined for the evolution of self-organising
synchronisation requires that each robot in the group displays a simple periodic behaviour,
which should be entrained with the periodic behaviour of the other robots present in the
arena. The individual periodic behaviour consists in oscillations along the y direction of
a rectangular arena (see Figure 2). Oscillations are possible through the exploitation of
a symmetric gradient in shades of grey painted on the ground, which can be perceived
by the robots through the infrared sensors placed under their chassis (ground sensors).
The gradient presents a black stripe for |y| > 1, in which the robots are not supposed
to enter. Collisions with walls or other robots are avoided using the infrared proximity
sensors placed around the cylindrical body of the robots. Finally, synchronisation of the
movements can be achieved by exploiting a binary communication system: each robot
can produce a continuous signal that is perceived by every robot in the arena, including
the signalling one. Signals are perceived in a binary way, that is, either there is someone
signalling in the arena, or there is no one.

The evolutionary experiments presented in this study are performed in simulation,
using a simple kinematic model of the s-bot robots [Mondada et al., 2004], and the re-
sults are afterwards validated on the physical platform. Artificial evolution is used to
set the connection weights and the bias terms of a fully connected, feed forward neural
network—a perceptron network. The evolved genotype is mapped into a control structure
that is cloned and downloaded onto all the robots taking part in the experiment, therefore
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obtaining a homogeneous group of robots. During evolution, we use groups composed
by three robots only. The performance of a genotype is evaluated by a 2-component func-
tion: F = 0.5 · FM + 0.5 · FS ∈ [0, 1]. The movement component FM simply rewards
robots that move along the y direction within the arena at maximum speed. With respect
to the taxonomy introduced in Section 2.1.2, this component is behavioural, external
and implicit. In fact, it rewards the movements of the robot from the observer perspec-
tive, without explicitly indicating how to perform a periodic behaviour: the oscillatory
behaviour derives from the fact that the arena is surrounded by walls, so that oscillations
during the whole trial are necessary to maximise FM. The second fitness component
FS rewards synchrony among the robots as the cross-correlation coefficient between the
distance of the robots from the x axis. Also this component is behavioural, external
and implicit: it is related to the group behaviour, and measures a quantity—the cross-
correlation—that is available only to the observer. In addition to the fitness computation
described above, two ecological selective pressures are present. First of all, a trial
is stopped when a robot moves over the black-painted area, and we assign to the trial a
performance F = 0. In this way, robots are rewarded to exploit the information coming
from the ground sensors to perform the individual oscillatory movements. Secondly, a trial
is stopped when a robot collides with the walls or with another robot, and also in this
case we set F = 0. In this way, robots are evolved to efficiently avoid collisions.

Behavioural and scalability analyses We performed 20 evolutionary replications,
each starting with a different population of randomly generated genotypes. Each replica-
tion produced a successful synchronisation behaviour, in which robots display oscillatory
movements along the y direction and synchronise with each other, according to the re-
quirements of the devised fitness function. In general, it is possible to distinguish two
phases in the evolved behaviours: an initial transitory phase during which robots achieve
synchronisation, and a subsequent synchronised phase. The transitory phase may be char-
acterised by physical interferences between robots due to collision avoidance, if robots are
initialised close to each other. The collision avoidance behaviour performed in this con-
dition eventually leads to a separation of the robots in the environment, so that further
interferences to the individual oscillations are limited and synchronisation can be achieved.
The synchronous phase is characterised by a stable synchronous oscillations of all robots,
and small deviations from synchrony are immediately compensated.2 Each evolved con-
troller produces a signalling behaviour that varies while the robots oscillate. The main
role of the evolved signalling behaviour is to provide a coupling between the oscillating
robots, in order to achieve synchronisation. In response to a perceived signal, robots react
by moving in the environment, changing the trajectory of their oscillations. This results in
a modulation of the oscillation amplitude and frequency, which allows the robots to reduce
the phase difference among each other, and eventually synchronise (for further details, see
[Trianni and Nolfi, 2009]).

Once analysed the synchronisation behaviours evolved using three robots only, we
tested their ability to scale up with the group size. To do so, we compared the performance
of the evolved behaviour varying the group size. To avoid overcrowding, we performed
the scalability analysis in larger arenas, ensuring a constant density of robots across the
different settings. We evaluated all best evolved controllers 100 times using six different
group sizes (3, 6, 12, 24, 48 and 96 robots). The obtained results are presented in the top
part of Figure 3. It is possible to notice that most of the best evolved controllers have
a good performance for groups composed of 6 robots. Performance degrades for larger
group sizes and only few controllers produce scalable behaviours up to groups formed by
96 robots. The main problem that reduces the scalability of the evolved controllers is

2Videos are available at http://laral.istc.cnr.it/esm/trianni-nolfi-hcr/.
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Figure 3: Scalability analysis. The boxplot shows, for each evolved controller, the per-
formance obtained in tests with 3, 6, 12, 24, 48, and 96 robots. Each box represents the
inter-quartile range of the data, while the black horizontal line inside the box marks the
median value. The whiskers extend to the most extreme data points within 1.5 times
the inter-quartile range from the box. Outliers are not shown. Top: scalability of the
evolved controllers under normal conditions. Bottom: scalability of the synchronisation
mechanism.

given by the physical interactions among robots. Despite the constant initial density we
introduced in order to limit the disruptive effect of collision avoidance, physical interactions
nevertheless occur with a higher probability per time step, as the group size increases.
Every collision avoidance action provokes a temporary de-synchronisation of at least two
robots, which have to adjust their movements in order to re-gain synchronous oscillations
with other robots. The global and binary communication implies that the whole group is
influenced by the attempt of few robots to re-gain synchronisation.

To summarise, the above analysis showed that physical interactions and collision avoid-
ance have a disruptive effect on the synchronisation ability of the robots, and this effect is
more and more visible as the group size increases. However, the synchronisation mecha-
nism evolved may scale with the group size if we ignore physical interactions. To test this
hypothesis, we performed an identical scalability analysis, but in this case we ignore the
physical interactions among the robots, as if each robot was placed in a different arena and
perceived the other robots only through sound signals. The obtained results are plotted
in the bottom part of Figure 3. Differently from what was observed above, in this case
many controllers present perfect scalability, with only a slight decrease in performance
due to the longer time required by larger groups to perfectly synchronise. This result con-
firms the analysis about the negative impact of physical interferences and collisions among
robots. In fact, removing the necessity to avoid collisions leads to scalable self-organising
behaviours.

Nevertheless, many other controllers present poor scalability properties. It is possible
to notice that the performance presents a high variability up to a certain group size. The
variable performance indicates that in some cases the robots are able to synchronise, and
in other cases not. With larger group sizes, the performance stabilises to a low, constant
value, independent from the initial conditions and the number of robots used. This value,
which is characteristic of each non-scaling controller, represents the performance of an
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Figure 4: Scalability analysis for the continuous communication system. Top: scalability
of the evolved controllers under normal conditions. Bottom: scalability of the synchroni-
sation mechanism.

incoherent attractor for the robotic system. In other words, for every initial condition the
robotic system converges into a dynamical condition in which no robot can synchronise
with any other. By observing the actual behaviour produced by these controllers, we
realised that the incoherent condition is caused by a communicative interference problem:
the signals emitted by different robots overlap in time and are perceived as a constant
signal (sound signals are global and are perceived in a binary way, preventing a robot
from recognising different signal sources). If the perceived signal does not vary in time,
it does not bring enough information to be exploited for synchronisation. This problem
is the result of the global communication form in which the signal emitted by a robot is
perceived by any other robot everywhere in the arena. Moreover, from the robot point of
view, there is no difference between a single robot and a thousand signalling at the same
time. The lack of locality and of additivity is the main cause of failure for the scalability of
the evolved synchronisation mechanisms. However, as we have seen, this problem affects
only some of the analysed controllers. In the remaining ones, the evolved communication
strategies present an optimal scalability that is only weakly influenced by the group size.

Re-engineering for scalability We identified a cause of the lack of scalability in the
communication system, which is neither additive nor local. Given that we are interested
here in global synchronisation, we decided to re-engineer our experiments focusing on the
additivity of the communication system. We evolved self-organising synchronisation be-
haviours exploiting exactly the same setup as above, but changing the way robots signal
and perceive emitted signals: we change the binary communication system with a contin-
uous one. Now, robots always emit a signal encoding a number in the continuous range
[0,1]. The emitted signals are perceived as the average among all the perceived signals.
By doing so, the influence of an individual robot on the global perceived signal—which is
equal for all robots in the arena—depends on the signalling behaviour of the whole group:
the bigger the group, the smaller the influence of the single individual. On the basis of
the results obtained so far, we expect that self-organising synchronisation behaviour can
be evolved with such a communication system, and that they are more scalable.

Also in this case, we performed 20 evolutionary runs for groups of three robots. All
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evolutionary runs were successful, and produced synchronisation behaviours that are qual-
itatively similar to those obtained with the binary communication system: robots perform
oscillations over the painted gradient and react to the perceived signal by modifying the
individual behaviour, in order to synchronise with other robots. The scalability analysis
was performed with the same modalities as described above, and the obtained results are
presented in Figure 4. In the above plot, scalability is tested including physical inter-
actions, and also in this case, we notice that collisions prevent the scalability of some
controllers. However, it is possible to notice that the usage of an additive communication
system leads to better performance even with large groups. In fact, differently from what
was observed before, physical interactions and collision avoidance do not have a severe im-
pact on the whole group, as the signals of few non-synchronous robots are averaged with
those emitted by the rest of the group. As a consequence, the influence on the group of a
single synchronising robot decreases with increasing group size. This leads to an improved
group performance.

We also performed a scalability analysis for the evolved synchronisation mechanisms,
removing again the physical interactions among robots. The results plotted in the bottom
part of Figure 4 show that all evolved synchronisation mechanisms perfectly scale, and they
do not suffer from the communicative interference observed with binary signals. In fact,
the perceived signal brings information about the average signalling behaviour of all robots.
As a consequence, synchronisation is always achieved, no matter the group size. Notice
also that all controllers present a linear decrease in performance in correspondence to an
exponential growth of the group size. This observation suggests that the self-organising
synchronisation mechanism is only slightly affected by the group size.

3.2 Coordinated Motion and Emergent Decisions

The second case study focuses on a particular behaviour, namely coordinated motion. In
Nature, this behaviour is commonly observed, for instance in flocks of birds or in schools of
fish (see [Camazine et al., 2001], chapter 11). We have studied coordinated motion in the
particular context of the SWARM-BOTS project,3 which aimed at the design and imple-
mentation of an innovative swarm robotics artifact—the swarm-bot—which is composed of
a number of independent robotic units—the s-bots—that are connected together to form
a physical structure (see Figure 5). When assembled together, the s-bots must coordinate
in order to have an overall coherent motion of the swarm-bot. In this case, coordinated
motion takes a particular flavour, due to the physical connections among the s-bots, which
open the way to study novel interaction modalities that can be exploited for coordination
[Baldassarre et al., 2007]. Coordinated motion is a basic ability and is essential for an
efficient motion of the swarm-bot as a whole. It constitutes a basic building block for the
design of more complex behavioural strategies, such as collectively moving and avoiding
to fall out of the borders of the arena, or decide whether to pass over a gap or not .

Experimental Setup A swarm-bot can efficiently move only if the chassis of the as-
sembled s-bots have the same orientation. The s-bots can independently rotate their
chassis, and should prove capable of negotiating a common direction of movement and
compensating possible misalignments that occur during motion. Each s-bot is provided
with a traction sensor, which measures the pulling/pushing forces exerted by the robots
assembled to its turret. At the beginning of a trial, the s-bots start with their chassis
oriented in a random direction. Their goal is to choose a common direction of motion on
the basis of the only information provided by their traction sensor, and then to move as
far as possible from the starting position. The common direction of motion of the group

3For more details, see http://www.swarm-bots.org.
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Figure 5: Left: four real s-bots forming a linear swarm-bot. Centre and Right: four s-
botscoordinately move and avoid falling. Notice that one s-bot is suspended out of the
border of the arena, and the physical connections among s-bots provide support.

should result from a self-organising process based on local interactions, which are shaped
as traction forces. We exploit artificial evolution to synthesise a simple feed-forward neural
network that encodes the motor commands in response to the traction force perceived by
the robots. The evolutionary algorithm used in this case is identical to the one described
above. Also in this case we make use of a homogeneous group of robots. The fitness
of the genotype is computed as the average distance covered by the group during the
trials. This fitness function is again behavioural, external and implicit, as it rewards
the group behaviour looking at the final goal, that is, moving as far as possible from the
initial position, without explicitly indicating how coordination should be achieved.

Coordinated motion in a swarm-bot Using the setup described above, 30 evolu-
tionary runs have been performed in simulation. All the evolutionary runs successfully
synthesised controllers that produced coordinated motion in a swarm-bot. Direct obser-
vation of the evolved strategies shows that at the beginning of each trial the s-bots try to
pull or push the rest of the group in the direction of motion they are initially placed. This
disordered motion results in traction forces that are exploited for coordination: the s-bots
orient their chassis in the direction of the perceived traction, which roughly corresponds
to the average direction of motion of the group. This allows the s-bots to rapidly converge
toward a common direction and to maintain it.

In order to understand the mechanisms implemented by the evolved controller, we
studied the individual behaviour by systematically varying the angle and the intensity of
the traction force applied to the turret. We realised that the controller roughly implements
two rules: (i) rotate the chassis in the direction of the perceived traction when the traction
intensity is high and the traction direction is not aligned with the chassis direction; (ii)
keep moving in the current direction when the traction intensity is low. This two rules
are sufficient to break the symmetry and to observe a coordinated motion at the level of
the group. In fact, they generate a positive feedback loop that allows to amplify initial
random fluctuation and to reinforce the choice of a common direction of motion. In fact,
at the beginning of each test, all s-bots start moving forward in the random direction they
were initialised. Being assembled together, they generate traction forces that propagate
throughout the physical structure. Each s-bot perceives a single traction force, that is,
the resultant of all the forces applied to its turret, which roughly indicate the average
direction of motion of the group. Following the simple rules described above, an s-bot
rotates its chassis in order to align to the perceived traction force. In doing so, some s-bots
will be faster than the others, therefore reinforcing the traction signal in their direction
of motion. As a consequence, the other s-bots perceive an even stronger traction force,
which speeds up the alignment process. Overall, this positive feedback mechanism makes
all s-bots quickly converge toward a same direction of motion.

The self-organising behaviour described above is very effective and scalable, leading
to coordinated motion of swarm-bots of different size and shape, despite it was evolved
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using a specific configuration (i.e., four s-bots in linear formation). We have tested the
system in simulation using up to 36 robots physically assembled in a square structure,
and we observed that coordinated motion would still occur, even though it takes usually
longer to achieve coordination. Tests with real robots showed a good performance as well,
confirming the robustness of the evolved controller. Overall, the tests with simulated and
physical robots prove that the evolved controllers produce a self-organising system able
to achieve and maintain coordination among the individual robots [Baldassarre et al.,
2007]. The evolved behaviour maintains its properties despite the particular configuration
of the swarm-bot. It also constitutes an important building block for swarm-bots that
have to perform more complex tasks such as coordinately moving toward a light target
[Baldassarre et al., 2006], and coordinately exploring an environment by avoiding walls
and holes [Baldassarre et al., 2006, Trianni and Dorigo, 2006]. In the following, we analyse
more in detail the “hole avoidance” extension of the coordinated motion task, and we show
how it can lead to emergent collective decisions.

Hole avoidance and emergent collective decisions The “hole avoidance” task is a
simple but challenging navigation problem, in which s-bots in a swarm-bot formation have
to explore an arena presenting open borders in which they risk to fall (see Figure 5, centre
and right). To do so, the s-bots are provided with infrared proximity sensors placed under
the chassis of the robot, referred to as ground sensors, which detect the distance of the
chassis from the ground. With these sensors, an s-bot can detect the empty space beneath
whenever it is close to the border of the arena. The controller is a feed-forward neural
network that directly connects the traction and ground sensors to the motor outputs.
The parameters of the neural controller are evolved with the usual strategy. However, we
exploited the knowledge gained evolving a simple coordinated motion in order to devise
an internal fitness function. In this case, in fact, an external fitness would be complex to
devise, as it is difficult to evaluate the avoidance behaviour without being too explicit about
how falling should be avoided. We therefore devised a fitness function that rewards straight
and fast motion of the s-bots, looking at the wheels’ speed, and penalises the s-bots that do
not coordinate their movements with the group or that spend too much time in the vicinity
of the arena border. This last component is computed simply looking at the activation
of the traction and the ground sensors: we minimise the perceived traction force—which
implicitly corresponds to groups that move coordinately—and require that the ground
sensors are always activated—which implicitly corresponds to robots that move far from
the borders of the arena. We aggregate at the group level the values internally computed
on each s-bot by selecting the minimal one. This ensures that the group performance
is conservatively estimated. Overall, the fitness function is behavioural, internal and
implicit. Additionally, we exploit an ecological selective pressure by penalising those
cases in which the swarm-bot falls (for more details, see [Trianni and Dorigo, 2006]).

The behaviours produced by the evolved neural networks are characterised by an initial
coordination phase that leads to a coherent motion of the swarm-bot, in a very similar way
to the simple coordinated motion case. The swarm-bot can therefore move coordinately
into the arena exploiting the information coming from the traction sensor. When close
to the border of the arena, an s-bot can detect the edge through the ground sensors, and
reacts by rotating the chassis and changing its direction of motion. This change in direction
produces a traction force for the other s-bots, which triggers a new coordination phase that
continues until the s-bots eventually choose a new direction of motion, leading the swarm-
bot away from the arena border. In some cases, the reaction of a single s-bot may not be
sufficient to influence the behaviour of the rest of the group. As a consequence, the s-bot
may be pushed out of the arena. However, physical connections serve as support for this
s-bot, while the rest of the group continues to perform hole avoidance and eventually leads
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the whole swarm-bot to a safer location.
This behaviour is mainly based on the properties of the traction sensor, which allows

the swarm-bot to exploit the direct interactions among s-bots—shaped as traction forces—
to communicate the presence of a hazard—the hole to be avoided [Trianni and Dorigo,
2006]. Traction forces are also at the basis of the self-organising process that leads to
the collective decision about passing over a trough or avoiding it when it is too wide.
Intuitively, if a through is small enough to be bridged, the swarm-bot could pass over it
exploiting the physical connections among s-bots. However, a mechanism is necessary to
estimate the width of the through and trigger an avoidance or a passing-over behaviour.
Such an estimation can be collectively performed—and a decision collectively taken—by
the s-bots forming the swarm-bot, without making use of the individual perception of the
trough (e.g., by means of their camera or ground sensors), which would anyway be very
limited. We designed a set of experiments in order to test the ability of a swarm-bot to
bridge a gap of varying size. This test is intended to demonstrate how the simple controllers
developed for hole avoidance generalise to a collective decision-making mechanism for
discriminating between situations that can be faced by a swarm-bot from situations that
could be too hazardous even for a large connected structure.

The swarm-bot is placed in an arena divided by a trough (see Figure 6). We test
swarm-bots of different size—4, 9, and 16 s-bots connected in a square formation—that
have to confront with a trough of width varying from 2 to 30 cm. We performed 100
evaluation trials per experimental setup, systematically varying the swarm-bot size and
the trough width—i.e., 100 trials for each size/width pair. The results of this analysis are
plotted in Figure 7. The plot shows, for each trough width, the performance of the three
studied swarm-bots. We count the number of trials in which the swarm-bot successfully
bridges the gap and passes on the other side. We also count the number of errors, that is,
trials in which the swarm-bot falls into the troughs or remains stuck: even if the gap is
bridged, the swarm-bot may not be able to efficiently coordinate in order to pass on the
other side. In fact, once the gap is encountered and bridged by some of the s-bots, a new
coordination phase is triggered which generally leads to the choice of a new direction of
motion, that may let the swarm-bot retrace its steps. Furthermore, the coordination phase
over the trough is time-consuming, and the swarm-bot may not be able to completely pass
over the trough in the limited available time.

From the results shown in Figure 7 it is possible to notice how the success rate gen-
erally decreases as the width of the gap increases. Up to a certain width, the swarm-bot

Figure 6: Trajectories drawn by a swarm-bot composed of 9 s-bots in a square formation.
Left: the swarm-bot is able to pass over a 10 cm wide trough. Right: the swarm-bot avoids
a 20 cm wide trough, which could be too large to be bridged.
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Figure 7: Performance of a swarm-bot passing over a trough. The stacked boxes represent
the number of trials in which the swarm-bot manages to pass over the trough, and the
number of trials in which an error occurs (i.e., the swarm-bot falls or remains stuck over
the trough).

systematically passes over the through. This width depends on the swarm-bot ’s size: the
bigger the swarm-bot, the larger the gap that can be passed. For larger sizes, a transition
can be observed in which the swarm-bot stops passing over the trough systematically and
sometimes avoids it. Finally, for very large troughs the avoidance behaviour is usually pre-
ferred. The behaviour presented above can be considered conservative, as the avoidance
is in general preferred to the passing over the trough. This is not surprising because the
behaviour was evolved explicitly for the hole avoidance task. Therefore, a trough can be
estimated too large to be bridged even when the swarm-bot is big enough to pass over it.
However, looking at the success rate shown in Figure 7, we can notice that the swarm-bots
perform reasonably well with respect to their physical constraints. In fact, given the size
of a 4-individual swarm-bot, the maximum width of a trough that can be bridged is about
12 cm. Our results show that from this width on, the swarm-bot always performs an
avoidance action, while the swarm-bot is able to pass over narrower troughs, even if not
systematically. A similar situation can be observed for the case of 9 and 16 s-bots, which
are respectively characterised by the maximum width of 18 and 30 cm.

Whether a trough is avoided or bridged depends on multiple factors, among which
the orientation of the swarm-bot and its direction of motion when it first approaches the
trough. In fact, the collective behaviour of passing over a trough relies on a delicate
balance between the forces exerted by the s-bots that touch the ground and the missing
influence of those s-bots that are suspended over the gap. The size of the swarm-bot also
matters, as it has a bearing on the inertia of the whole group: the bigger the size of the
swarm-bot, the bigger the inertia of the physical structure. Once the swarm-bot reaches
an edge, its inertia will cause some s-bots to be pushed out, over the gap. In fact, few
s-bots have a small effect on the overall behaviour of the group. When a sufficient number
of s-bots is suspended out of the arena, the forces exerted by those s-bots that reach the
edge can be perceived by the whole group, and they will trigger a change in the direction
of motion of the swarm-bot in order to avoid falling. If some of the suspended s-bots
reach the other side of the trough, they start again to have an influence on the rest of
the group. First, they align with the current direction of motion, and afterwards they
contribute to the gap passing behaviour pulling the whole structure on the other side of
the gap. This emergent behaviour can be considered self-organised, as it depends on the
interactions among individuals and on clear feedback loops: the conformist tendency of
the s-bots in following the average direction of the group constitutes a positive feedback,
while the tendency to avoid falling of individual s-bots and the missing influence of the
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suspended s-bots constitute the negative feedback. In conclusion, the collective behaviour
of passing over a trough relies on the emergent decision-making mechanism that allows
a swarm-bot to discriminate between those troughs that are small enough to be safely
bridged and those that are not. In other words, through a self-organising process, the
swarm-bot is able to collectively estimate the width of the trough, and consequently it is
able to take the correct decision about the way to move.

3.3 Adaptation of Communication, Coordination and Categorisation

In the previous case studies, we have observed how artificial evolution can synthesise effi-
cient self-organising behaviours that result from simple reactive controllers. In this section,
we show how various complexity levels can be added to the basic system described above
in order to evolve cooperative, cognitive behaviours in a collective system. Above all,
by providing individual robots with more complex control and communication abilities,
it is possible to obtain group behaviours that can rely on both the individual and the
group dynamics. For instance, the ability to integrate information over time can provide
robots with an excellent mean to balance individual with group abilities. In a evolutionary
perspective, this can result in complex forms of cooperation particularly adapted to the
experimental scenario. In fact, the actions of each robot are influenced by—and can in-
fluence themselves—the status of the other robots, which try to make their own decisions
at the same time. This opens the way to cooperative solutions based on communication,
which makes it possible to exploit not only the dynamical interactions among individ-
uals, but also the way in which these interactions change over time. In this study, we
demonstrate how a number of different strategies can be evolved displaying non-trivial
individual and collective decision making. Moreover, we show that those solutions that
exploit communication perform better, systematically achieving a consensus in the group
and reducing the decision errors.

Experimental setup The task we study consists in a binary decision to be performed
by three simulated robots, which have to recognise whether the arena they are placed in
presents an opening or not. The arena is delimited by a circular band in shades of grey
painted on the ground, which simulates some obstacles that the robots cannot overcome
individually (see Figure 8a,b). The arena may present a way out, that is, a passage through
which a solitary s-bot can exit (see Figure 8a). However, an s-bot does not have the per-
ceptual abilities to detect the way out from every location in the arena: in fact, the grey
level of the circular band can be perceived by the s-bots only locally through their ground
sensors. Therefore, robots should first search for the way out and, if they do not find any
as in Figure 8b, they should aggregate in one place. In short, we consider here the decision
problem of switching from the individual behaviour of searching for the way out to the
collective behaviour of aggregating in one place. S-bots can exploit an omnidirectional
camera to perceive the other robots in their vicinity. Moreover, robots are provided with
a global, binary communication system, like the one for the synchronisation experiments
presented in Section 3.1. Each robot is controlled by a continuous time recurrent neural
network (CTRNN, see [Beer, 1995]) with a multi-layer topology, shown in Fig. 8c. Four
inputs take values from the camera, four from the ground sensors and one from sound
perception, while two outputs control the wheels and one controls the sound signal. More-
over, the network is provided with a 5-neuron continuous time recurrent hidden layer.
The weights of the synaptic connections between neurons, the bias terms and the decay
constants of the hidden neurons are genetically encoded parameters. S-bots are rewarded
to search and pass through the way out when placed in environment A, and to aggregate
when they are placed in environment B. In this case we use a behavioural, external
and implicit fitness function. However, we explicitly reward a different behaviour to be
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(a) (b) (c)

Figure 8: (a,b) The experimental arena contains a circular band in shades of grey, which
may or may not have the way out. Dark lines represent the trajectory of three robots, and
the starting position on the trajectories is indicated by empty circles. (c) The three-layer
architecture of the neural controller. The hidden layer is composed of continuous time
neurons with fully recurrent connections.

performed when robots are placed in environment A and in environment B. For more
details, see [Trianni et al., 2007]. The experiment was run in simulation.

Results We performed 20 replications of the experiment, most of which were success-
ful. We selected the best controllers from the last generation of each evolutionary run—
hereafter referred to as C1, ..., C20—which were evaluated for 2000 trials, half in environ-
ment A and half in environment B. The obtained results are summarised in Table 1: in
both environments, we computed the average performance and its standard deviation (avg
± std), the rates of success %S (all robots achieve the desired distance DO), failure %F
(no robot achieves the desired distance DO), partial success/failure %M (not all robots
are successful or fail) and error %E (robots collide or cross the black edge of the circular
band). In each trial, we also computed the coverage, which is defined as the percentage
of the circular band that each robot covers in average during a trial: a value smaller than
1 indicates that the single robot does not search the whole circular band for the way out,
while a value bigger than 1 indicates that the single robot performs more than one tour
(see Fig. 9). The coverage—together with the success rate—is useful to quantitatively
assess the quality of the evolved strategies.

Successful controllers produce good search behaviours when robots are in environment
A: robots avoid collisions and move away from the centre of the arena. Once on the circular
band, robots start looping in search of the way out, which is eventually found and traversed.
On the contrary, if robots are placed in environment B, the absence of the way out is
recognised by the robots through the integration over time of their perceptual flow, which
includes the signals that the robots may emit. As a consequence, a behavioural transition
can be observed from a searching behaviour (state S) to an aggregation behaviour (state
C). The modalities with which the transition is performed significantly vary across the
different solutions synthesised during different evolutionary runs.4 However, looking at
the behaviour produced by the evolved controllers, we recognised some similarities that
let us classify the controllers in 4 classes.

Class U = {C4, C6, C14, C17} encompasses the “unsuccessful” controllers, that is, those
controllers that solve the task only in part. These controllers generally produce appro-
priate search behaviours when robots are in environment A, as confirmed by the good
performance and the high success rate (see Table 1). However, when robots are placed
in environment B they fail in systematically aggregating, scoring a low performance and

4Videos are available at http://laral.istc.cnr.it/esm/trianni-nolfi-hcr/.
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Table 1: Post-evaluation results. See text for details.
environment A environment B

avg ± std %S %M %F %E avg ± std %S %M %F %E

U

c4 0.82± 0.14 92.0 6.5 1.0 0.5 0.37± 0.11 19.4 18.9 61.7 0.0
c6 0.85± 0.06 98.6 1.2 0.0 0.2 0.31± 0.08 0.9 30.6 68.4 0.1
c14 0.83± 0.15 91.3 6.2 0.0 2.5 0.46± 0.15 2.5 65.1 24.0 8.4
c17 0.66± 0.07 74.3 25.4 0.1 0.2 0.39± 0.08 4.9 78.8 16.3 0.0

B

c1 0.86± 0.11 97.7 0.8 0.0 1.5 0.69± 0.07 95.9 2.8 1.3 0.0
c5 0.85± 0.13 92.1 5.7 0.0 2.2 0.57± 0.14 66.8 16.9 16.1 0.2
c8 0.83± 0.15 90.3 7.6 0.4 1.7 0.57± 0.12 34.3 55.2 9.2 1.3
c10 0.88± 0.07 99.0 0.6 0.0 0.4 0.66± 0.07 94.1 2.1 3.7 0.1
c16 0.85± 0.14 94.4 4.1 0.0 1.5 0.74± 0.13 94.1 2.3 1.4 2.2

M

c3 0.83± 0.15 85.8 11.7 0.0 2.5 0.63± 0.09 87.6 8.1 3.4 0.9
c7 0.79± 0.20 89.3 5.5 0.0 5.2 0.62± 0.25 49.5 34.2 10.5 5.8
c11 0.86± 0.07 98.9 0.6 0.0 0.5 0.61± 0.07 87.6 9.5 2.7 0.2
c13 0.85± 0.09 94.3 5.2 0.0 0.5 0.62± 0.07 93.0 5.3 0.8 0.9
c19 0.81± 0.15 94.8 2.3 0.6 2.3 0.67± 0.12 91.7 3.8 1.9 2.6
c20 0.87± 0.06 99.6 0.0 0.0 0.4 0.59± 0.07 79.3 11.3 9.3 0.1

C

c2 0.86± 0.10 98.6 0.1 0.0 1.3 0.82± 0.12 97.1 0.4 0.9 1.6
c9 0.87± 0.08 99.2 0.0 0.0 0.8 0.78± 0.12 88.1 8.3 3.1 0.5
c12 0.87± 0.05 99.6 0.3 0.0 0.1 0.74± 0.11 87.8 6.4 5.4 0.4
c15 0.86± 0.08 99.3 0.0 0.0 0.7 0.78± 0.13 96.6 0.4 0.6 2.4
c18 0.84± 0.18 95.8 0.0 0.0 4.2 0.83± 0.17 95.3 0.3 1.0 3.4

a poor success rate. The second class B = {C1, C5, C8, C10, C16} consists of controllers
that produce a strategy named “bouncing” after the aggregation behaviour of the robots
in state C: robots search for each other by continuously bouncing off the circular band,
so that they sooner or later meet and remain close. Communication is generally not
exploited, and consequently each robot individually switches from state S to state C,
without any reference to the state of the other robots. The bouncing behaviour is re-
silient to possible individual failures in environment A: by bouncing off the circular band,
robots can continue searching for the way out, even if less efficiently. The third class
M = {C3, C7, C11, C13, C19, C20} encompasses controllers that produce a strategy named
“meeting”, due to the fact that robots aggregate by encountering at a meeting point, which
is normally close to the centre of the arena. Except for C7 and C19, controllers of this class
do not make use of communication. The main difference with class B controllers resides in
the aggregation behaviour, which lets robots leave the band and move in circles close to the
centre of the arena, waiting for the other robots to reach a similar position. This behaviour
is not robust with respect to possible decision errors in environment A. As a consequence,
evolution shaped the controllers of this class to be characterised by a higher coverage (see
Fig. 9), which suggests that robots perform in average more than one loop over the circu-
lar band before switching to state C. The last class C = {C2, C9, C12, C15, C18} is named
“cooperative” because it encompasses controllers that produce communicative behaviours
exploited for cooperation in the decision making. In fact, robots are able to share the
information they collect over time through their signalling behaviour. The robots initially
emit a sound signal, and they stop only after looping on the circular band for some time.
If any robot finds the way out, signalling continues, inducing all other robots to remain
in state S and to keep searching for the way out. This leads to a high success rate in
environment A, and no complete failures are observed (see Table 1). When the way out
is not present, all robots eventually stop signalling, allowing the transition to state C and
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Figure 9: The coverage of the evolved controllers. Boxes represent the inter-quartile range
of the data, while the horizontal lines inside the boxes mark the median values. The
whiskers extend to the most extreme data points within 1.5 times the inter-quartile range
from the box. The empty circles mark the outliers.

triggering the aggregation behaviour. By sharing the information through communica-
tion, robots can collectively search the circular band, splitting the task among them: as
shown by the coverage data in Fig. 9, each robot covers from a quarter to half circle when
placed in environment B. This allows to consistently reduce the search time, achieving
high performance and high success rates. Communication is fundamental here, because it
provides robustness to the decision making process and it makes the system more efficient
by reducing the time necessary to take the decisions to switch from solitary to collective
behaviours.

It is important to note here the interaction between individual sensory-motor coor-
dination, individual categorisation and communication. By contemporaneously evolving
these three features, it is possible to observe the interplay of different selective pressures
that shape the individual and the collective response. The first selective pressure is related
to the searching behaviour, which allows to develop individual sensory-motor coordination
necessary to navigate in the environment and efficiently find the way out in environment
A. Some evolutionary runs remain stuck at this level (i.e., those that produce controllers
within class U), as there is no observable behavioural transition from state S to state
C for the individual robots. The second selective pressure that comes into play is the
necessity to individually categorise the environment, therefore integrating the perceptual
flow over time in order to recognise that there is no way out in environment B (e.g., most
of the controllers belonging to class B and class M). Finally, the ecological selective
pressures—given by the limited time available in each trial—have an influence on the ef-
ficiency of the categorisation process: groups that categorise the environment quickly have
more time to accomplish the task. Here, communication comes into play: the strategy
exploited by class C controllers is not efficient per se, but it is efficient as soon as it allows
to reduce the individual coverage, as this leaves more time to the group to aggregate in
environment B. It results that communication is initially neutral for the task, as it does
not give a selective advantage. However, once a signalling mechanism is in place (e.g.,
signalling when the way out is found), it is exploited by evolution for refining both the
transition from state S to state C, which is performed only when there is no signalling
robot, and the individual coverage, which is reduced from generation to generation to
increase the efficiency of the overall behaviour. These complex evolutionary dynamics are
observable in this setup thanks to the dynamical properties of the individual controllers
that are able to integrate information over time. Evolution can act on additional free
parameters, that is, the time constants of the CTRNN that define the leaky integration
abilities of the controller. By acting on both individual and collective dynamics, complex
solutions like the one observed in class C controllers cab be synthesised.
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4 Conclusions

In this chapter, we have shown how artificial evolution applied to collective robotics can
produce coordinated and cooperative behaviours. We have described the main method-
ological choices that need to be performed when setting up an evolutionary experiment,
and we have proposed a particular technique that proved successful for the evolution of
self-organising behaviours. In the studies presented in this chapter, self-organisation is the
result of simple individual behaviours and simple interactions among robots, both shaped
by evolution in order to achieve and support the group organisation. Such self-organising
behaviours present interesting generalisation abilities, above all when they exploit feed-
back loops given by the physical interactions among the robots and between the robots
and the environment, as presented in Section 3.2.

Given that the evolutionary machinery just works on the parameters of the individ-
ual controller, it is of fundamental importance the attentive definition of the ecological
conditions in which evolution is carried out. In particular, the definition of suitable com-
munication modalities can make the difference. In fact, contrary to physical constraints
that cannot be modified at will (e.g., friction or gravity), it is usually possible to define
the communication protocol—i.e., the way in which signals are emitted and perceived—
in particular when communication is implemented through sound, light or other wireless
signalling technologies. However, this freedom should be suitably managed: ER favours
simple sub-symbolic communication forms, and aims at contextually developing the be-
havioural and communication strategies, which can co-evolve as a single whole. For in-
stance, in the experiment presented in Section 3.1, we observed that a global binary signal
is sufficient for synchronisation, even though it does not carry explicit information about
the position of the signalling robot in the arena. In this case, communicative and non com-
municative behaviours co-evolve and adapt one to the other, exploiting the fine-grained
interactions between the robots and the physical and social environment. In Section 3.3,
we have also shown that co-evolution opens the way to communication forms that are
tightly linked with the sensory-motor coordination of the robots and their individual cog-
nitive abilities (e.g., integration over time of perceptual information for decision making).
Finally, we have observed how changing the communication protocol can have a strong
impact on the properties of the group behaviour: the additive communication exploited
for promoting scalability in Section 3.1 does not require additional complexity at the level
of the individual behaviour, but helps in providing a more robust and scalable synchroni-
sation mechanism.

The study of scalability of the synchronisation behaviour also demonstrated that it
is possible to engineer some features of a system undergoing artificial evolution on the
basis of the outcomes of the evolutionary process itself. We showed that an attentive
analysis of negative results conveys knowledge on how to modify the characteristics of the
system that are designed by the experimenter and are not varied during the evolutionary
process so to allow evolution to find better solutions. We believe that this result could be
generalised towards an engineering approach to ER, which can provide guidelines for the
design of evolutionary experiments. This is particularly relevant for collective and swarm
robotics, in which the desired behaviour of the group is an indirect result of the control
and communication rules followed by each individual.

An engineering approach to ER may help also in overcoming the current limitations
of the approach. Currently, the main problem is scaling in complexity beyond simple and
idealised scenarios toward real world problems. This is the grand challenge for ER in the
future. There are two possible directions, in our view: on the one hand, more complex
behaviours can be evolved by providing more capabilities and more structure to the in-
dividual controllers. In this case, complex individual behaviours support the cooperation
between individuals, for instance, through the development of a cooperative language that
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can help regulating the inter-individual interactions [De Greef and Nolfi, 2009]. We be-
lieve that another, very promising and yet-to-be-explored direction should fully rely on
self-organisation for producing distributed, cognitive robotic systems. That is, the capabil-
ities of the individual robot should remain relatively simple, but the group should display
cognitive abilities, such as decision-making, categorisation or attention, as the result of
the numerous interactions among the individuals. Moreover, by evolving swarm robotic
systems that display cognitive processes, it could be possible to shed light on the dis-
tributed mechanisms that support cognition in collectives. Current trends in the scientific
community recognise in the study of collective behaviours the possibility to identify the
distributed mechanisms underlying certain cognitive processes such as decision-making or
attention (see [Couzin, 2009, Goldstone and Gureckis, 2009, Marshall and Franks, 2009]).
These studies claim that, at a certain level of description, operational principles used to
account for the behaviour of natural swarms may turn out to be extremely powerful tools
to identify the neuroscientific basis of cognition (i.e., the explanatory principles). Both the
above scientific and the technological drives led to the introduction of Swarm Cognition
as a novel approach to the study of cognitive processes emerging from the interaction of
low-level cognitive units, be they natural or artificial [Trianni and Tuci, 2009]. In this
framework, evolutionary swarm robotics allows to explore in a synthetic setup the rela-
tionship between embodied cognition and information processing: a swarm robotic system
merges these two aspects within the numerous interactions among the system components,
which all together perform cognitive processing in continuous interaction with the envi-
ronment. It is therefore interesting to identify which are the components of the collective
cognitive process that are directly related to the embodiment of the robots, and which are
the components that are instantiated in the interactions among robots.
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