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Abstract 

A normative framework for modeling causal and counterfactual reasoning has been 

proposed (Pearl, 2000; Spirtes, Glymour, & Scheines, 1993).  The framework is general, 

covering both probabilistic and deterministic reasoning, and is built on the premise that 

reasoning from observation differs fundamentally from reasoning from intervention.  

Intervention includes actual (e.g., physical) manipulation as well as counterfactual 

thought (e.g., imagination).  The key representational element that affords the distinction 

is what Pearl calls the do operator.  The do operation represents intervention and has the 

effect of simplifying a causal model.  Construing the do operator as a psychological 

function affords predictions about how people reason when asked counterfactual 

questions about causal relations. Seven studies are reported that test these predictions for 

both deterministic and probabilistic causal and conditional (logical) arguments. The 

results support the proposed representation of causal arguments, especially when the 

nature of the counterfactual intervention is made explicit. The results also show that 

conditional relations are construed variously and are highly sensitive to pragmatic 

context. 
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Human reasoning is sometimes said to have two principal modes, deductive and 

inductive.  In a sense, these modes have complementary characterizations.  Deductive 

reasoning is easy in principle, difficult in practice; inductive reasoning is difficult in 

principle, easy in practice.  Of course, deductive reasoning faces many obstacles 

including combinatorial explosion, expressive limitation, and impossibility theorems.  

Nevertheless, the problem of deciding the validity of a deductive argument is well 

defined and a variety of automated theorem-proving systems exist.  Yet people stumble 

even with some theoretically simple arguments.  For instance, many people fail to 

determine the validity of arguments of the modus tollens form (see, e.g., Evans, 1982, for 

a review): 

 
If A then B. 
Not B. 
Therefore, not A. 
 

In contrast, a prevalent belief is that inductive argument strength cannot be reduced to 

any kind of formal logic (Hume, 1748; Goodman, 1954) and yet people often come 

quickly and easily to inductive conclusions that are widely accepted.  For example, even 

very young children would be surprised if the sun didn’t rise one morning. 

Many authors attribute the human facility with inductive inference to the power of 

causal reasoning:  Our ability to wisely project predicates from one category to another 

on inductive grounds alone depends on our ability to select the causal relations that 

support the inference and reason appropriately about them.  For example, from the 

observation that one motorcycle accelerates quickly, one can conclude with some 

confidence that another motorcycle of the same brand and size will accelerate quickly 

based on (more or less vague) causal knowledge of motorcycle engines and 

manufacturing. 
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Indeed, causal analysis is pervasive. In the law, issues of negligence concern who 

caused an outcome and the determination of guilt in many countries requires evidence of 

a causal chain from the accused’s intention through their action to the crime at hand. 

Evidence that might increase the probability of guilt (e.g., an accused's race) is not 

permitted in court if it doesn't support a causal analysis of the crime. Some legal scholars 

(Lipton, 1992) claim that legal analyses of causality are in no sense special, that causation 

in the law derives from everyday thinking about causality. Causal analysis is equally 

pervasive in science, engineering, politics, indeed in every domain that involves 

explanation, prediction, and control. 

The appeal to causal analysis certainly does not solve all the problems of induction.  

In fact, Hume (1748) argued that causal induction itself cannot be logically justified.  

Moreover, causal analysis can be difficult because it depends not only on what happened, 

but also on what might have happened (Mackie, 1974). The claim that an event A caused 

another event B implies that if A had not occurred, then B would not have occurred 

(unless of course some other sufficient cause of B also occurred). Likewise, the fact that 

B would not have occurred if A had not suggests that A is a cause of B.  

But the appeal to causal analysis does solve a part of the problem of induction.  This 

is because causal inductions can be made with confidence using a method familiar to all 

experimental scientists: manipulation of independent variables.  Through manipulation, 

one controls an independent variable, holding other relevant conditions constant, such 

that changes in its value will determine the value of a dependent variable. This supports 

an inference about whether the independent variable is a cause of the dependent one: It is 

if the dependent variable changes after intervention, it isn’t if the dependent variable 

doesn’t change.  Through manipulation one sets up states to be directly compared, like an 
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experimental and a control condition, in perfect analogy to the comparison between 

actual and counterfactual worlds implied by a causal statement. This dependence of 

causal relations on counterfactuals lies at the heart of a fundamental law of experimental 

science: Mere observation can only reveal a correlation, not a causal relation.  And 

everyday causal induction has an identical logic; people often must intervene on the 

world rather than just observing it to draw a causal induction.  

If we already have some causal knowledge, then certain causal questions can be 

answered without actual intervention. Some can be answered through mental 

intervention; by imagining a counterfactual situation in which a variable is manipulated 

and determining the effects of that change. People attempt this, for example, whenever 

they wonder "if only..." (if only I hadn't made that stupid comment... If only my data 

were different...). 

Recent analytic work by Spirtes, Glymour, and Scheines (1993) and by Pearl (2000) 

presents an even rosier picture.  Not only can causal relations be learned through 

intervention, in some situations merely correlational data suffice. Pearl presents a 

normative theoretical framework for causal reasoning about both actual and 

counterfactual events. Central to this framework is the use of directed acyclic graphs to 

represent both actual and counterfactual causal knowledge. Interpreted as a psychological 

model, the framework makes predictions about how people reason when asked 

counterfactual questions about causal relations. The most basic representational 

distinction in the causal modeling framework is that between observation and action. 

Observation versus Action (Seeing versus Doing) 

Seeing.  In general, observation can be represented using the tools of conventional 

probability. The probability of observing an event (say, that a logic gate is working 



Undoing effect in causal reasoning 
8 

properly) under some circumstance (e.g., the temperature is low) can be represented as 

the conditional probability that a random variable G, representing the logic gate, is at 

some level of operation g when temperature T is observed to take some value t: 

 

Pr{G = g|T = t} defined as 
t}=Pr{T

t}=T & g=Pr{G
. 

 
Conditional probabilities are symmetric in the sense that, if well-defined, their converses 

are well-defined too. In fact, given the marginal probabilities of the relevant variables, 

Bayes' rule tells us how to evaluate the converse: 

 

Pr{T = t|G = g} = 
g}=Pr{G

t}=Pr{T
t}=T|g=Pr{G .      (1) 

Doing.  To represent action, Pearl (2000) proposes an operator do(•) that controls 

both the value of a variable that is manipulated as well as the graph that represents causal 

dependencies. do(X=x) has the effect of setting the variable X to the value x and also 

changes the graph representing causal relations by removing any directed links from 

other variables to X (i.e., by cutting X off from the variables that normally cause it). For 

example, imagine that you believe that temperature T causally influences the operation of 

logic gate G, and that altitude A causally influences T. This could be represented in the 

following causal diagram: 

 
 
 
Presumably, changing the operation of the logic gate would not affect temperature (i.e., 

there's no causal link from G to T). We can decide if this is true by acting on the logic 

gate to change it to some operational state g and then measure the temperature; i.e., by 

running an experiment in which the operation of the logic gate is manipulated. We could 

A T G 
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not in general determine a causal relation by just observing temperatures under different 

logic gate conditions, because observation provides merely correlational information. 

Measurements taken in the context of action, as opposed to observation, would reflect the 

probability that T=t under the condition that do(G=g): 

 
Pr{T = t|do(G = g)} 

 
obtained by, first, constructing a new causal model by removing any causal links to G: 

 
 
 
The rationale for this is that if I have set G=g, then my intervention renders other 

potential causes of g irrelevant. I am overriding their effects, so I should not make any 

inferences about them. Now I can examine the probability distribution of T in the causal 

graph. But in doing so, I should not take into account the prior probability of g, because I 

have set its value, making its value certain by virtue of my action. In the causal modeling 

framework, the absence of a path from one variable to another represents probabilistic 

independence between each value of those variables.  Because the do operation removes 

the link between T and G in the graph, they are rendered probabilistically independent.  

The result is that: 

 
Pr{T = t|do(G = g)} = Pr{T = t}. 

 
The do operator is used to represent experimental manipulations. It provides a means 

to talk about causal inference through action. It can also be used to represent mental 

manipulations. It provides a means to make counterfactual inferences by determining the 

representation of the causal relations relevant to inference if a variable had been set to 

some counterfactual value. 

A T G 
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In the next section of this paper, we report several experiments intended to test 

whether people are sensitive to the logic of the do operator; in particular, whether people 

disconnect an intervened-on variable from its (normal) causes.  In other words, we test 

the prediction of the do operator that variables manipulated actually or counterfactually 

should not be treated as diagnostic of their causes.  All experiments present participants 

with a set of premises and then ask them to judge the validity of a particular conclusion 

based on a supposition.  We compare suppositions about observed events to various types 

of counterfactual suppositions.  The causal modeling framework applies to both 

deterministic and probabilistic causal relations.  The first six experiments involve 

deterministic relations, the final experiment generalizes the conclusions to arguments 

with probabilistic relations. 

Experiment 1 

Consider the following set of causal premises in which A, B, C, and D are the only 

relevant events: 

 
A causes B. 
A causes C. 
B causes D. 
C causes D. 
D definitely occurred. 
 

On the basis of these facts, answer the following 2 questions: 

i. If B had not occurred, would D still have occurred?___  (yes or no) 
ii. If B had not occurred, would A have occurred?___  (yes or no) 
 
Pearl (2000) gives the following analysis of such a system. First, we can graph the 

causal relations amongst the variables as follows: 
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A

B

C

D

 

You are told that D has occurred. This implies that B or C or both occurred, which in turn 

implies that A must have occurred. A is the only available explanation for D. Because A 

occurred, B and C both must have occurred.  Therefore, all 4 events have occurred. Thus 

far the rules of ordinary logic are sufficient to update our model. When asked what would 

have happened if B had not occurred, however, we should apply the do operator, do(B = 

did not occur), with the effect of severing the links to B from its causes: 

A

B

C

D

 

Therefore, we should not draw any inferences about A from the absence of B. So the 

answer to the counterfactual question ii. above is "yes" because we had already 

determined that A occurred, and we have no reason to change our minds. The answer to 

counterfactual question i. is also "yes" because A occurred and we know A causes C 

which is sufficient for D. 

Other theories of propositional reasoning, mental models theory (Johnson-Laird & 

Byrne, 1991) and any theory based on logic (e.g., Rips, 1994), don't really make 

predictions in this context because the premises use causal relations and therefore lie 

outside the propositional domain. The closest they come is to posit that causal relations 

are interpreted as material conditionals (an assumption made by Goldvarg & Johnson-

Laird, 2001). To see if such an interpretation of the causal premises above is valid, we 

can consider the following conditional premise set: 
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If A then B. 
If A then C. 
If B then D. 
If C then D. 
D is true. 
 

Along with the questions: 

i. If B were false, would D still be true?  ___  (yes or no) 
ii. If B were false, would A be true?  ___  (yes or no) 

 

The causal modeling framework makes no particular prediction about such premises 

except to say that, because they do not necessarily concern causal relations, responses 

could well be different from those for the causal premises.  Of course, if the context 

supports a causal interpretation, then they should elicit the same behavior as the causal 

set.  The predictions made by a "material conditional" account will depend on 

assumptions about how people interpret the questions; i.e., how they modify the original 

set of premises. To answer question i. people may suppress the statement that D is true, 

and add the statement that B is false. If they do, the truth of D is indeterminate, because it 

is not entailed by the falsity of B. Alternatively, people might not suppress D. The answer 

would then be "yes" because the original premises state that D is true. Such an account 

yields a less ambiguous answer to question ii. Once people suppose that B is false, they 

are licensed to infer, by modus tollens, that A is false.  

If this "material conditional" construal is extended to the causal premises, it should 

make identical predictions for corresponding causal premises.  In particular, people 

should respond “no” to the second question, in contrast to the causal modeling prediction 

which directly contradicts the modus tollens form.  The causal modeling framework 
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states that B’s non-occurrence does not imply A’s non-occurrence whereas modus tollens 

requires that, whenever if A then B holds, not B implies not A. 

Method 

Materials.  Three scenarios were used in this experiment, each with a causal and a 

conditional version.  One scenario (Abstract) used the premise sets just shown involving 

causal or conditional relations between letters with no real semantic content.  Two 

additional scenarios with identical causal or logical structure and clear semantic content 

were also used. One pair of premise sets concerned a robot. The causal version of that 

problem read: 

A certain robot is activated by 100 (or more) units of light energy. A 500 unit beam of 
light is shone through a prism which splits the beam into two parts of equal energy, 
Beam A and Beam B, each now travelling in a new direction. Beam A strikes a solar 
panel connected to the robot with some 250 units of energy, causing the robot's 
activation. Beam B simultaneously strikes another solar panel also connected to the 
robot. Beam B also contains around 250 units of light energy, enough to cause 
activation. Not surprisingly, the robot has been activated. 
 
1) If Beam B had not struck the solar panel, would the robot have been activated? 
2) If Beam B had not struck the solar panel, would the original (500 unit) beam have 

been shone through the prism? 
 

The conditional version was parallel except that causal statements were replaced by 

if…then… statements: 

A certain robot is activated by 100 (or more) units of light energy. If a 500 unit beam 
of light is split into two equal beams by a prism, one of these beams, Beam A, will 
strike a solar panel connected to the robot with some 250 units of energy. If the 500 
unit beam of light is split into two equal beams by a prism, the second of these beams, 
Beam B, will strike a second solar panel connected to the robot with some 250 units of 
energy. If Beam A strikes the first solar panel, the robot will be activated. If Beam 
strikes the second solar panel, the robot will be activated. The robot is activated. 
 
1) If Beam B had not struck the solar panel, would the original (500 unit) beam have 

passed through the prism? 
2) If Beam B had not struck the solar panel, would the robot have been activated? 
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The third scenario involved political antagonisms amongst three states.  Here is the causal 

version: 

Germany's undue aggression has caused France to declare war. Germany's undue 
aggression has caused England to declare war. France's declaration causes Germany to 
declare war. England's declaration causes Germany to declare war. And so, Germany 
declares war. 

 
1) If England had not declared war, would Germany have declared war? 
2) If England had not declared war, would Germany have been aggressive? 
 

Here is the conditional version: 

If Germany is unduly aggressive, then France will declare war. If Germany is unduly 
aggressive, then England will declare war. If France declares war, Germany will 
declare war. If England declares war, Germany will declare war. Germany has 
declared war. 

 
1) If England had not declared war, would Germany have declared war? 
2) If England had not declared war, would Germany have been aggressive? 
 
Participants and procedure. 238 University of Texas at Austin undergraduates were 

shown all three scenarios in questionnaire format, 118 the causal versions and 120 the 

conditional versions.  Scenario order was counterbalanced across participants. The 

instructions urged participants to assume that the relations presented were the only ones 

relevant by stating at the outset of each problem “Please treat the following as facts. 

Assume that there are no factors involved outside of those described below.”  Participants 

circled either “Yes” or “No” to answer each question and were then asked to rate their 

confidence in their decision on a scale from 1 (completely unsure) to 7 (completely 

certain).  They worked at their own pace and were given as much time as they desired to 

answer the questions. 

Results and Discussion 

Percentages of participants responding “yes” to each question are shown in Table 1. 

A very different pattern can be observed for the Causal and Conditional statements.  The 
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causal modeling framework correctly predicted the responses to the causal premises, the 

vast majority of responses were “yes.”  The responses to the conditional premises much 

more variable.  For each question in each scenario, the proportion of “yes” responses was 

significantly higher in the Causal than the Conditional condition (all p’s < .01 by z test).  

Moreover, all of the Causal but only one of the Conditional percentages was greater than 

chance (50%; p < .001), the exception being whether D would hold in the Robot scenario.  

Some participants may have interpreted the "if-then" connectives of the conditional 

version as causal relations, especially for this problem. The clear physical causality of the 

robot problem lends itself to causal interpretation. 

The predominance of "yes" responses in the causal condition implies that for the 

majority of participants the supposition that B didn't occur did not influence their beliefs 

about whether A or D occurred. This is consistent with the idea that these participants 

mentally severed (undid) the causal link between A and B and thus did not draw new 

conclusions about A or about the effects of A from a counterfactual assumption about B. 

The response variability for the conditional premises suggests that no one strategy 

dominated for interpreting and reasoning with conditional statements. 

These conclusions are supported by the confidence judgments.  Participants were 

highly confident when answering causal questions (mean of 6.0 on the 1-7 scale).  They 

were appreciably less confident when answering conditional questions (mean of 5.4), 

t(236) = 4.77; s.e. = .13; p < .0001. 

Experiment 2 

One might argue that the difference between the causal and conditional conditions in 

Experiment 1 is not a greater tendency to counterfactually decouple variables from their 

causes in the causal over the conditional context, but instead different pragmatic 



Undoing effect in causal reasoning 
16 

implicatures of the two contexts. In particular, the causal context might presuppose the 

occurrence of A more than the conditional context presupposes the truth of A. Thus, it is 

(perhaps) more plausible that D would be true in the conditional premise sets even if A 

were false than that D would have occurred in the causal premises even if A had not. If 

so, then the greater likelihood of saying "yes" to the A question in the causal scenarios 

could be due to these different presuppositions rather than different likelihoods of 

mentally performing the undoing operation.  And if people consider A more likely, then 

they might also be expected to be more likely to confirm the occurrence of D. 

To control for this possibility as well as to replicate the effect, we examined causal 

and conditional versions of premises with the following structure: 

 

B 

C 

D 

E A 

 

Participants were told not only that the final effect, E, had occurred, but also that the 

initial cause, A, had too. This should eliminate any difference in presupposition of the 

initial variable because its value is made explicit. To illustrate, here is the causal version 

of the abstract problem: 

A causes B. 
B causes C.  
B causes D.  
C causes E.  
D causes E.  
A definitely occurred. 
E definitely occurred. 
 
i. If D did not occur, would E still have occurred? 
ii. If D did not occur, would B still have occurred?  

 
The causal modeling framework predicts that a counterfactual assumption about D 

should disconnect it from B in the causal context so that participants should answer "yes" 
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to both questions.  A parallel conditional version was also used.  Participants should only 

answer "yes" in the conditional context if they interpret the problem causally. Once again 

the predictions of a material conditional account depend on assumptions about how the 

questions modify the premises. A plausible assumption is that only statements mentioned 

in the question are suppressed. Thus in answering question ii., belief about the truth of D 

and B might be suspended and not-D supposed. However, this leads to a conflict because 

not-D implies not-B (via modus tollens) but the premises state A and thus imply B (via 

modus ponens). It is thus unclear whether or not they should infer B. In any case, a 

material conditional account must predict no difference between the causal and 

conditional contexts.  

Method 

Twenty Brown University undergraduates received either the causal or conditional 

versions of the Abstract, Robot, and Politics problems described above, but modified so 

that the occurrence/truth of the variable corresponding to B in the example was 

disambiguated by adding a fifth variable.  Because of concerns about the clarity of  the 

political problem in Experiment 1, it was revised for this experiment.  Here is the causal 

version: 

Brazil’s undue aggressiveness is a consequence of its political instability. Brazil's 
undue aggression causes Chile to declare war. Brazil's undue aggression causes 
Argentina to declare war. Chile's declaration causes Brazil to declare war. Argentina's 
declaration causes Brazil to declare war. Brazil is in fact politically unstable. Brazil 
declares war. 
 

Otherwise, the method was identical to that of Experiment 1. 
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Results and Discussion 

The results, shown in Table 2, are comparable to those of Experiment 1 although the 

proportion of "yes" responses was lower for one of the Robot scenario questions, whether 

the beam was shining if the solar panel had not been struck (only 55).  This difference 

will be addressed in Experiments 3-7.  Overall, the experiment provides further evidence 

of the undoing effect for causal relations.  A difference between causal and conditional 

premises again obtained for Abstract and Political premises, z = 2.20; p = .01, and z = 

2.00, p = .02, respectively, but not for Robot ones, z = 1.18; n.s.  Moreover, 5 of 6 

percentages were significantly greater than 50% in the Causal condition (all those greater 

than or equal to 70).  Only 2 of 6 reached significance in the Conditional condition with 

values of 75 and 80.  Both of these questions may well have induced a causal reading. 

Confidence judgments were again higher for answers to causal questions (mean of 5.89) 

than for answers to conditional questions (mean of 5.23), t(38) = 2.30; s.e. = .27; p < .05. 

The replication of the undoing effect in this experiment suggests that the earlier 

results cannot be attributed entirely to different pragmatic implicatures from causal and 

conditional contexts. Any differences between Experiments 1 and 2, especially the 

absence of the undoing effect for the one Robot question, could be due to a different 

participant population, a smaller sample size in this study, some proportion of 

participants failing to establish an accurate causal model with these more complicated 

scenarios, or participants not implementing the undoing operation in the expected way 

(i.e., not mentally disconnecting B from D).  Failure to undo is plausible for these 

problems because D's nonoccurrence is not definitively counterfactual. The question said 

"If D did not occur" which does not state why D did not occur; the reason is left 

ambiguous. One possibility is that D did not occur because B didn't. Nothing in the 
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problem explicitly states that the nonoccurrence of D should not be treated as diagnostic 

of the nonoccurrence of B. 

Experiment 3 

The causal modeling framework predicts that the connection between B and D should 

be mentally undone whenever D is explicitly prevented; when an intervention (mental or 

physical) outside the model clearly determines the value of D. To simulate such a 

situation, we repeated Experiment 2, but made the interventional prevention of D explicit.  

The prediction was that the undoing effect should prove more robust with explicit 

intervention. 

Method 

Different groups of either 18 or 20 Brown University undergraduates saw the same 

sets of premises in both causal and conditional contexts as in Experiment 2, but were 

asked different questions, questions that made the external prevention of D explicit. For 

the abstract causal context, the questions were: 

i. If somebody stepped in to prevent D from occurring, would E still have occurred? 
ii. If somebody stepped in to prevent D from occurring, would B still have occurred?  
 
For the abstract conditional context, the questions were: 

i. If somebody stepped in and changed the value of D to false, would E still be true? 
ii. If somebody stepped in and changed the value of D to false, would B still be true? 
 

For the robot and political contexts, the causal and conditional questions were 

identical to one another, only the paragraphs describing the scenarios differed.  The robot 

questions read: 
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i. If a lead barrier were placed in the path of Beam B to prevent it from striking the 
solar panel, would the robot have been activated? 

ii. If a lead barrier were placed in the path of Beam B to prevent it from striking the 
solar panel, would the original (500 unit) beam have been shone through the prism? 

 
The political questions read: 

1) If the heavy toll of a natural disaster in Argentina prevents Argentina from 
declaring war, would Brazil have been aggressive? 

2) If the heavy toll of a natural disaster in Argentina prevents Argentina from 
declaring war, would Brazil have declared war? 

Results and Discussion 

Results are shown in Table 3. The probability of saying "yes" was consistently high 

in the Causal condition and higher in the explicit prevention context than in its absence 

(Experiment 2), but not significantly higher, z’s < 1 for all 3 scenarios. The differences 

may not be statistically significant because the probability of saying "yes" was already so 

high in the causal condition of Experiment 2. In any case, the great majority of 

participants acted as if explicitly preventing D caused it to have no diagnostic value for 

its cause (B) and that therefore other effects of the cause (namely E) still held.  All 

percentages were significantly greater than 50% at p < .001 except for the Political 

question about E, p = .09.  In other words, the effect of explicitly preventing D is well 

captured by the do operator. 

An unexpected byproduct of explicit prevention was to increase the proportions of 

"yes" responses in even the conditional context.  Both the Robot problem elicited a mean 

response of 83, significantly greater than 50% p < .001 and a mean of 67, marginally 

greater than 50%, p = .07.  The Abstract problem also elicited one response marginally 

greater than 50%, p = .07.  The Political problem elicited one response greater than 50%, 

p < 001.  The increase with conditional premises probably occurred because the explicit 

prevention context made it more likely that the premises would be construed causally. 
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For example, a question beginning "If a lead barrier were placed in the path of Beam B to 

prevent it from striking the solar panel," may well have suggested to participants that they 

should construe the situation in terms of physical causation and reason about the situation 

using causal logic. 

As usual, confidence judgments were higher for answers to causal questions (mean of 

5.28) than for answers to conditional questions (mean of 5.10), however in this case the 

difference did not reach significance, t < 1. 

Experiment 4 

Experiment 4 attempted to replicate the observations made thus far by showing the 

undoing effect as well as the enhancement of that effect in an explicit prevention context. 

Moreover, along with Experiments 5 and 6, it did so using an if-then statement in order to 

show that a conditional statement can be treated as causal in an appropriate context. 

Experiment 4 was also intended to defeat an alternative interpretation of our results. It 

might be argued that in the causal conditions participants treated the relations in the 

premises as merely correlational and not causal.  This would explain why they responded 

“yes” to our counterfactual questions:  If variables do not cause other variables, then 

changing the value of one variable should have no effect on the values of other variables; 

in particular, the counterfactual assumption that one variable did not occur should not 

change participants’ beliefs about the value of any other variable.  Of course, this account 

falters in its failure to explain why participants would believe that events A in 

Experiment 1 and B in Experiments 2 and 3 occurred in the first place.  In any case, the 

following experiments attempt to put this account fully to rest. 

Consider the following scenario that assumes the simplest possible causal graph 

 
A B 
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and states the relation between A and B using an if-then construction: 

All rocketships have two components, A and B. Component A causes component B to 
operate. In other words, if A, then B. 
 

In the non-explicit prevention condition, participants were shown these statements and 

then asked: 

i. Suppose component B were not operating, would component A still operate? 
ii. Suppose component A were not operating, would component B still operate? 
 

In the explicit prevention condition, they were asked: 

i. Suppose component B were prevented from operating, would component A still 
operate? 

ii. Suppose component A were prevented from operating, would component B still 
operate? 

 

The causal modeling framework predicts the undoing effect, that participants will say 

"yes" to question i., Component A will continue to operate even if B isn't because A 

should be disconnected from B by virtue of the counterfactual supposition about B. It 

also predicts the proportion will be higher in the explicit than non-explicit prevention 

conditions because the nature of the intervention causing B to be non-operative is less 

ambiguous. No other framework, logical or otherwise, makes either of these predictions.  

Unlike previous experiments, and in contrast to the correlational interpretation discussed 

above, the causal modeling framework predicts that people should respond "no" to the 

second question regardless of condition. If A is the cause of B, then B should not operate 

if A does not. 

Method 

The problem was given to the 78 Brown undergraduates who participated in 

Experiments 2 and 3.  Approximately half were given the explicit and half the non-
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explicit prevention questions.  Half of each group were given the scenario shown above 

and half were shown an identical scenario except that the roles of components A and B 

were reversed.  Otherwise, the method was identical to that of previous experiments.  

Results and Discussion 

The results, averaged over the “If A then B” and “If B then A” groups (and described 

in terms of the former) are shown in Table 4. The 68% giving an affirmative answer to 

the first question in the Non-explicit Prevention condition replicates the undoing effect 

seen in the previous studies. The even greater percentage (89%, z = 2.35; p < .01) in the 

Explicit condition replicates the finding that the undoing effect is greater when the reason 

that a variable has the specified value is made explicit. Responses to the second question 

were almost all negative, demonstrating that people clearly understood that the relevant 

relation was causal. This rules out the alternative explanation for the earlier studies, that 

participants didn't interpret the relations as causal but merely as correlational.  In this 

experiment, confidence was uniformly high (approximately 6) in all conditions. 

Experiment 5 

Like Experiment 4, this experiment contrasted an explicit and non-explicit prevention 

using the simplest possible causal structure involving only two events.  In addition, it 

included a noncausal condition in which the conditional relation between the two 

variables was not obviously causal.  

The causal scenarios were as follows: 

John is a Richman. The Richmen is a group of successful people who get elected 
based on merit and then get rewarded. All of their members are given ten million 
dollars. Therefore: If John is a Richman, he will have had ten million dollars at some 
point in his life. 

 
In the Causal, Nonexplicit prevention condition, the following question was asked: 
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Imagine that John had never received the ten million dollars, would he have still been 
a Richman? 
 

In the Causal, Explicit prevention condition, the question made the nature of the 

counterfactual antecedent more explicit: 

Imagine John’s wife had prevented him from ever getting ten million dollars, would he 
have still been a Richman?  

 
We predict a larger undoing effect in the Explicit than Nonexplicit conditions, namely 

that the majority will respond “yes.”  We also included a noncausal condition that we 

refer to simply as “Conditional” for which we expected responding to be more variable: 

John is a Richman.  This is a name given to all of the people who have had ten million 
dollars at some point in their life. Therefore: If John is a Richman, he will have had ten 
million dollars at some point in his life. 

 
Imagine John’s wife had prevented him from ever getting ten million dollars, would he 
have still been a Richman?  

Method 

Thirty different participants were tested in each condition, a mixture of Brown 

undergraduates and volunteers tested at the local airport.  Otherwise the method was the 

same as previous experiments. 

Results and Discussion 

Percentage “yes” responses in the three conditions appear in Table 5.  A highly 

significant difference obtained across conditions, F(2,87) = 29.4, MSe = 15, p < .0001.  

Every single participant in the Explicit condition responded “yes,” providing strong 

support for the undoing effect with explicit prevention.  In the Nonexplicit prevention 

condition, less than 50% (37%) of participants responded “yes.”  This is the first time we 

have observed such a small percentage in a causal condition.  It may be that the 

pragmatics of the question was such that the negation of the antecedent did read as 
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diagnostic of its cause.  The percentage responding “yes” in the Conditional case was 

lower (30%), though the same statistically (t < 1), suggesting that not getting $10 million 

was again diagnostic of not being a Richman. 

Confidence judgments indicate participants answered with high confidence in the 

Explicit condition (mean of 6.0).  They were not as confident in the Nonexplicit causal or 

in the Conditional conditions (means of 4.9 and 5.4, respectively), although the effect of 

condition was not significant, F(1,87) = 1.85; MSe = 2.23; n.s. 

Experiment 6 

This experiment contrasted Causal, Correlational and Conditional conditions using a 

context of pure physical causality.  In the Causal condition, participants were told 

There are three billiard balls on a table that act in the following way: If ball 1 moves, 
then ball 2 moves. If ball 2 moves, then ball 3 moves. 
 

The causal model underlying this scenario looks like this: 

Ball 1                            Ball 2                         Ball 3 

In the correlational condition, the billiard balls did not cause each other to move but were 

instead all moved by a fourth variable, a common cause: 

Someone is observing three billiard balls that are constantly moving, each on a 
separate non-adjacent table. They are all being moved by one large magnet that is in 
the ceiling of the room. The person notices that: If ball 1 moves, then ball 2 moves. If 
ball 2 moves, then ball 3 moves. 
 

In the conditional condition, the relations at issue are deontic, not causal: 

Someone is being tested on her logical abilities. Her task is to move as many billiard 
balls as possible, without breaking the following rules: When certain balls move, other 
balls have to move too.  In particular: If ball 1 moves, then ball 2 moves. If ball 2 
moves, then ball 3 moves. 
 

In all three conditions, participants were asked the same questions that involved explicit 

prevention: 
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1) Suppose that someone held ball 2 so that it could not move, would ball 1 still move? 
2) Suppose that someone held ball 2 so that it could not move, would ball 3 still move? 
 
In the Causal condition, the causal modeling framework predicts the undoing effect, 

i.e., a response of “yes” to the first question and, because Ball 2 is the cause of Ball 3’s 

movement, a response of “no” to the second question.  In the correlational condition, 

holding Ball 2 should have no effect on other balls as they are all effects of a larger 

cause, the magnet, so participants should respond “yes” to both questions.  In the 

conditional condition, the logically correct answers would be “no” to question 1 (a modus 

tollens inference) and question 2 would have no necessary response.  Of course, the 

causal modeling framework makes no claim that people will succeed at responding 

logically and the trouble people have with the modus tollens form suggests we might not 

see consistent logical responding. 

Method 

The participants from Experiment 5 participated, 30 in each condition.  Otherwise the 

method was the same as previous experiments. 

Results and Discussion 

Choice data are shown in Table 6.  The results in the Causal condition were just as 

predicted.  The vast majority responded “yes” to the question about Ball 1 (80%) and 

“no” to the question about Ball 3 (90%).  In the correlational condition, every participant 

but one responded as predicted to the first question (97%).  Surprisingly, only 40% 

responded “yes” to the second question.  One possibility in this condition is that the 

scenario failed to make the intended causal model clear.  In particular, participants may 

have understood that the magnet influences Ball 3 only by influencing Ball 2.  As usual, 

the responses were highly variable in the Conditional condition.  Overall differences were 
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significant for both questions, F(2,86) = 13.68; MSe = 15; p < .0001 for question 1 and 

F(2,87) = 3.91; MSe = 19; p < .05 for question 2. 

As usual, confidence was highest in the Causal condition (mean of 5.9).  A one-way 

analysis of variance across the 3 conditions showed a significant difference, F(1,88) = 

5.71; MSe = 2.05; p < .05.  The difference is attributable to the Causal condition because 

confidence judgments did not differ between the Correlational (mean = 5.0) and 

Conditional (mean = 5.1) conditions, t < 1.  

Experiment 7 

The causal modeling framework applies to probabilistic arguments as well as 

deterministic ones.  Indeed, the logic of the do operator is identical in probabilistic and 

deterministic contexts and the undoing effect should hold in both. Experiment 7 examines 

the prediction in a probabilistic context.  In accordance with this shift from a 

deterministic to a probabilistic context, a probability response scale was used. As in most 

of the previous experiments, causal versions of the arguments were contrasted with 

conditional versions, and non-explicit prevention questions were contrasted with explicit 

ones. In addition, in this experiment we looked at two further differences in question 

format: the contrast between actual and counterfactual intervention, and the contrast 

between observation and intervention. 

Experiment 7 uses the same simple chain structure as Experiment 6: 

 

 

In the abstract causal condition participants were given the following premise set: 

When A happens, it causes B most of the time.   
When B happens, it causes C most of the time.   
A happened.    

A B C 
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C happened.   
 

They were then asked the following probability questions (with a 1-5 response scale): 

i. What is the probability that A would have happened if B hadn’t happened? 
ii. What is the probability that C would have happened if B hadn’t happened? 
 

In parallel with previous studies, the causal modeling framework predicts an undoing 

effect in question (i). That is, when assessing a counterfactual that supposes that B did 

not occur, participants should mentally sever the link from A to B, and thus not reduce 

their belief in the occurrence of A. On the probability response scale this would 

correspond to responses greater than the midpoint (3). In contrast, their responses to 

question (ii) should show a reduction in belief about the occurrence of C. The intact 

causal link from B to C, coupled with the counterfactual supposition that B does not 

occur, should lead to responses at or below the midpoint of the scale. 

The use of a probability response scale also enables us to check whether the undoing 

effect persists if people have the option to express complete uncertainty (by using the 

midpoint of the scale). In previous experiments people were given only two response 

options (yes and no).  In each case, they expressed relatively high confidence in their 

judgments, so it is unlikely that the results would differ if they had been given the 

opportunity to express uncertainty.  Nevertheless, this experiment allows us to verify this 

directly.  

As in all previous experiments except Experiment 4, we contrasted causal to 

conditional premises. The abstract conditional premises were as follows: 

If A is true, then B is likely to be true.   
If B is true, then C is likely to be true.   
A is true.   
C is true.   
 

Corresponding questions were 
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i. What is the probability that A would be true if B were false? 
ii. What is the probability that C would be true if B were false? 
 

Again we expected that responses would not be systematic with conditional premises. If 

people use modus tollens then their responses to (i) should be low.  However, strictly 

speaking, modus tollens does not apply with a probabilistic conditional.  If people 

interpret the conditional causally, then of course the predictions are identical to the causal 

case.  The correct response to (ii) is similarly ambiguous.  The second premise has no 

implications when B is false and so people might infer that C remains true, or else they 

might be confused and just choose to express uncertainty. 

As in Experiments 2 versus 3 and Experiments 4 and 5, we contrasted non-explicit 

prevention to explicit prevention questions.  The non-explicit questions were as above.  

In the causal condition, the explicit prevention questions were: 

i. Someone intervened directly on B, preventing it from happening.  What is the 
probability that C would have happened?   

ii. Someone intervened directly on B, preventing it from happening.  What is the 
probability that A would have happened?   

 
We predict stronger effects with explicit than non-explicit prevention questions.  In the 

conditional condition, the explicit prevention questions were: 

i. Someone intervened and made B false.  What is the probability that C would be 
true?   

ii. Someone intervened and made B false.  What is the probability that A would be 
true? 

 
Participants may use explicit prevention as a cue that conditional statements should be 

interpreted causally and thus responses in this condition may prove compatible with 

causal logic. 

The causal modeling framework applies to actual as well as counterfactual 

intervention.  Therefore, we included a Counterfactual condition in this study.  
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Participants were asked to imagine an intervention rather than being told that an 

intervention had actually occurred: 

i. Imagine a situation where someone intervenes directly on B, preventing it from 
happening.  In that case what is the probability that C would have happened?   

ii. Imagine a situation where someone intervenes directly on B, preventing it from 
happening.  In that case what is the probability that A would have happened?   

 
We expected responses in this condition to match those of the Explicit intervention 

condition. 

Finally, the causal modeling framework presupposes a fundamental distinction 

between observation and intervention.  We examined the psychological validity of the 

distinction by including Observation questions: 

i. What is the probability that C would have happened if we observed that B didn’t 
happen?   

ii. What is the probability that A would have happened if we observed that B didn’t 
happen?   

 
Unlike previous conditions, these questions explicitly state that B’s nonoccurrence was 

observed, and thus imply that B was not intervened on.  Therefore, B should be treated as 

diagnostic of A and C; in particular, we do not expect the undoing effect.  Therefore, the 

probability of A should be substantially reduced in this condition.  Of course, B’s 

nonoccurrence also makes C less likely so the judged probability in question 1 should 

also be low. 

We tested all of these conditions using 3 different scenarios:  The abstract scenario 

above, as well as a scenario concerning physical causality: 

When there is gas in the Rocketship’s fuel tank, it causes the engine to fire most of the 
time.     
When the engine fires, most of the time it causes the Rocketship to take off.   
The Rocketship’s fuel tank has gas in it.   
The Rocketship takes off.   
 

as well as a medical scenario: 
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Smoking causes cancer most of the time.   
Cancer causes hospitalization most of the time.   
Joe smokes.   
Joe is hospitalized.   
 
In sum, Experiment 7 uses a probability response scale, contrasts Causal to 

Conditional premises, examines 4 varieties of observation/intervention, and uses 3 

different scenarios each of a different type, all in the context of probabilistic premises. 

Method 

Design.  All variables were combined factorially: Causal versus Conditional premises 

x Type of Intervention (Unspecified, Explicit intervention, Counterfactual intervention, 

Observation) x Scenario (Abstract, Rocketship, Smoking).  All variables were 

manipulated between-participants except Scenario.  For half the scenarios, the question 

about the first variable (A in the Abstract scenario) came before the other question; for 

the other half, question order was reversed.  The order of scenarios was roughly 

counterbalanced across participants. 

Participants.  We tested 217 Brown University undergraduates using the same 

questionnaire format as previous studies.  We also tested 160 volunteer participants on 

the internet using an identical questionnaire. They were obtained by advertising on 

various websites related to psychological science. We obtained no identifying 

information about these participants.  An approximately equal number of web and non-

web participants were tested in each condition. 

Procedure .  The format of the questionnaire was identical to that of previous 

experiments except that the instructions for the response scale read, “Please respond to 

the following questions, using an integer scale from 1 to 5 where: 1 = very low, 2 = low, 

3 = medium, 4 = high, 5 = very high.”  Also, no confidence judgments were obtained. 
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Results and Discussion 

Brown University students and web participants gave the same pattern of responses 

and therefore we collapsed their data.  Mean probability judgments are shown in Table 7 

averaged across the three scenarios.  The overall patterns were similar across scenarios 

except that judgments in the Rocketship scenario tended to be lower than for the other 

scenarios, especially for the question about variable C (concerning whether the rocketship 

would take off if the engine fired).   

When the nature of the intervention was unspecified, little difference was observed 

between the Causal and Conditional conditions.  The undoing effect was not significant 

in either condition in the sense that the mean P(A|~B) judgments (3.2 and 3.0, 

respectively) did not differ from the midpoint of the response scale (3), t(41) = 1.5; s.e. = 

.16; n.s., and t < 1, respectively.  Participants were not sure about Event A when told B 

hadn’t happened or that B was false.  However, both judgments were higher than 

corresponding P(C|~B) judgments, t(41) = 5.09; s.e. = .17; p < .0001 and t(40) = 3.40; 

s.e. = .13; p < .01, respectively, suggesting that the negation of B did reduce belief in the 

occurrence/truth of C to some extent, consistent with a causal reading of the B-C relation. 

 The pattern in the Observational condition was similar, suggesting that participants 

treated the negation of B in the Unspecified condition as observational, not 

interventional.  Again, P(A|~B) judgments (2.7 and 3.3 in the Causal and Conditional 

conditions, respectively) were not statistically distinguishable from the midpoint of the 

scale, t(48) = 2.23; s.e. = .13; p < .05 and t(46) = 1.58; s.e. = .18; n.s., respectively.  

Moreover, these were again higher than corresponding P(C|~B) judgments, t(48) = 3.19; 

s.e. = .12; p < .01 and t(46) = 3.28; s.e. = .13; p < .01, respectively.  In other words, in the 

Observational condition, the negation of B was treated as removing any evidence in favor 
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of A and, to some extent, as evidence against C.  Consistent with the causal modeling 

framework, participants treated observations as correlational evidence and did not exhibit 

an undoing effect. 

Quite a different pattern was observed in the Interventional condition.  Here a strong 

undoing effect occurred, not only in the Causal but in the Conditional cases as well.  The 

mean judged P(A|~B) were appreciably higher than the scale midpoint, 3.9 and 4.1, 

respectively, t(48) = 7.75; s.e. = .12 and t(47) = 8.32; s.e. = .13; both p’s < .0001.  

Intervening explicitly to prevent B caused participants to maintain their belief in the 

occurrence/truth of A.  In the Causal case, the nonoccurrence of B suggested to 

participants that its effect didn’t occur either (mean P(C|~B) of 2.3, significantly lower 

than 3, t(48) = 4.36; s.e. = .15; p = .0001).  In the Conditional case, the probability of C 

given that its antecedent B was made false was judged completely unknown (the scale 

midpoint) even though participants had been told that C was true.  The difference 

between Causal and Conditional responses to the question about C may result from a few 

logically sophisticated participants who realized that B’s falsity has no bearing on the 

truth of C in the Conditional condition, even though B’s nonoccurrence did suggest the 

nonoccurrence of C in the Causal condition. 

Judgments after Counterfactual interventions were very similar to judgments in the 

Interventional condition.  Strong undoing effects can be seen for both Causal and 

Conditional P(A|~B) judgments (means of 3.9 and 4.3, respectively, both greater than 3, 

t(40) = 6.44; s.e. = .14 and t(50) = 11.05; s.e. = .12; both p’s < .0001).  Again, the 

nonoccurrence of B in the Causal condition lowered the judged probability of C to 2.1, 

significantly less than 3, t(40) = 4.81; s.e. = .18; p < .0001, whereas the falsity of B in the 
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Conditional condition lowered it to maximal uncertainty (mean of 2.9; t < 1).  

Apparently, participants did not distinguish actual from counterfactual intervention. 

The parallel tendencies amongst the probability judgments in the Causal and 

Conditional conditions and their consistency with the causal modeling framework suggest 

that, in this experiment, the conditional relations tended to be interpreted as causal.  

Indeed, this is a natural interpretation, particularly for the medical and rocketship 

scenarios. 

General Discussion 

These experiments show that the undoing phenomenon is robust and sometimes large. 

Told that a cause and effect had occurred and then asked to counterfactually assume that 

the effect had not occurred, people continue to believe in the occurrence of the cause.  

Undoing was observed when the effect was explicitly prevented by an external agent 

(Experiments 3-7) and to a lesser extent when the reason for the effect’s nonoccurrence 

was unspecified (Experiments 1, 2, and 4).  Undoing was observed for both deterministic 

(Experiments 1-6) and probabilistic (Experiment 7) arguments. The studies also 

demonstrate that the causal relations were indeed interpreted as causal by showing that 

effects were judged not to occur if their sole causes did not (Experiments 4 and 6) and 

that a relation of the form “A causes B” was not interpreted as a correlation between A 

and B (Experiment 6).  Experiment 7 also showed that participants clearly distinguished 

between observing the nonoccurrence of an event and an intervention that prevented the 

event from occurring; undoing obtained after an intervention, but not after an 

observation.  Moreover, the intervention could be either actual or counterfactual 

(imagined).  Finally, Experiments 1-3, 6, and 7 showed that a causal statement (A causes 

B) is not necessarily reasoned about in the same way as a conditional statement (if A then 



Undoing effect in causal reasoning 
35 

B).  However, a conditional could be interpreted as a causal with enough contextual 

support (Experiments 1-4, 7).  In general, conditionals were not given a consistent 

interpretation. 

The data show that most people obey a rational rule of counterfactual inference, the 

undoing principle. In every case in which a causal relation existed from A to B, A was 

known to have occurred and B was explicitly prevented from occurring, the great 

majority of people judged that A had still occurred.  Put this way, undoing seems almost 

obvious.  When reasoning about the consequences of an external intervention or 

counterfactual supposition of an event, most people do not change their beliefs about the 

state of the normal causes of the event. They reason as if the mentally changed event is 

disconnected and therefore not diagnostic of its causes. This is a rational principle of 

inference because an effect is indeed not diagnostic of its causes whenever the effect is 

not being generated by those causes but instead by mental or physical intervention from 

outside the normal causal system. To illustrate, when a drug is used to relax a patient, one 

should not assume that the reasons for the patient’s anxiety are no longer present. 

Despite the intuitiveness of the undoing principle, its implications are deep and wide-

ranging.  The most fundamental perhaps is the limit it places on the usefulness of Bayes’ 

rule and its logical correlates for updating belief.  Bayes’ rule is by far the most prevalent 

tool for adjusting belief in a hypothesis based on new evidence.  A situation frequently 

modeled using Bayes’ rule instantiates the hypothesis as a cause and the evidence as an 

effect.  For example, the hypotheses might be the possible causes of a plane crash and the 

evidence might be the effects of the crash found on the ground.  The evidence is used to 

make diagnostic inferences about the causes.  This is fine when the evidence is observed, 

but not if any manipulation by an external agent has occurred.  The probability of a cause 
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given a manipulated effect (i.e., given a do operation on the effect) cannot be determined 

using simple Bayesian inversion from the probabilities of the effect given its causes.  And 

intervention is hardly a rare or special case.  Manipulation is an important tool for 

learning; it is exactly what’s required to run the micro-experiments necessary to learn 

about the causal relations that structure the world.  Whenever we use this learning tool, as 

a baby does when manipulating objects, Bayes’ rule – at least used in the conventional 

way – will fail as a model of learning. 

The do operator also clearly distinguishes representations of logical validity from 

representations of causality.  This is seen most directly by comparing the modus tollens 

structure (If A then B, not B, therefore not A) to its corresponding causal do-structure (A 

causes B, B is prevented, therefore A’s probability is unaffected).  It is possible that the 

frequent observation that people fail to draw valid modus tollens inferences reflects a 

tendency to interpret apparently logical arguments as causal and “not B” as do(B = did 

not occur). 

If this possibility is correct, it would suggest that the interpretation of conditionals 

varies with the theme of the text that the statements are embedded in. Conditionals 

embedded in deontic contexts are well known to be interpreted deontically (Manktelow & 

Over, 1990).  Conditionals in other contexts support a variety of different inferences 

depending on their surrounding context (Almor & Sloman, 1996; cf. Edgington, 1995).  

The current studies show that when the theme is ambiguous, their interpretation will be 

highly variable.  We found that people consistently expressed more confidence when 

answering causal over conditional questions.  This supports our assertion that causal 

problems are more natural and that conditional ones lend themselves to more variable 

construal. 
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We do not believe that mental model theory can explain our data.  Goldvarg and 

Johnson-Laird (2001) propose that the statement “A causes B” refers to the same set of 

possibilities as “if A then B” along with a temporal constraint (B does not precede A).  

They represent the set of possibilities as a list of mental models: 

      A       B 
not A       B 
not A not B 
 

Because it equates the set of possibilities associated with causal and conditional relations, 

this proposal is obviously unable to explain the differences we observed between causal 

and conditional premises.  Moreover, because it doesn’t allow the possibility “A not B”, 

it is inconsistent with the undoing effect with causal premises.  

Goldvarg and Johnson-Laird (2001) do allow however that the set of possibilities can 

vary with enabling and disabling conditions.  To see how this might apply to our 

problems, consider the simplest case where A causes B, and subjects are asked whether A 

would still occur if B were prevented from occurring.  The statement that B is prevented 

from occurring presupposes some preventative cause X (e.g., I switch B off).  Given X, 

and the knowledge that X causes not B by virtue of being preventative, people might 

allow A.  That is, they might add to the list of possibilities the mental model: 

A   X   not B 

which licenses the inference from not B to A. 

The problem with this move is that the mental model that is supposed to represent 

causal knowledge itself requires causal knowledge to be constructed.  The variable X 

must be invented at the moment at which one learns that B is prevented from occurring.  

It couldn't exist a priori because that would lead to a combinatorial explosion of models; 

one would need to represent an enormous number of potentialities: the possibility that Y 
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enables B even in the presence of disabling condition X, the possibility that X’ prevents 

X, that X’’ prevents X’, etc.  So X must be invented after the intervention, and the set of 

possible models must then be reconstructed.  But if we're reconstructing the possible 

models, what rules are there to guide us?  Why is the model above the only possibility?  

Without prior causal knowledge another possibility might be 

not A  X  not B 

Of course, this possibility does not license the inference to A and so is not consistent with 

the undoing effect.  In sum, mental model reconstruction depends on prior causal models 

because causal models are the only source of constraints.  Pearl (2000) makes an 

analogous argument against Lewis’s (1986) counterfactual analysis of causation.  Lewis 

defines causation in terms of counterfactuals, whereas Pearl argues that it is the causal 

models that ground (causal) counterfactuals.  

Our data support the psychological reality of a central tenet of Pearl's (2000) causal 

modeling framework. The principle is so central because it serves to distinguish causal 

relations from other relations, such as mere probabilistic ones. The presence of a formal 

operator that enforces the undoing principle, Pearl's do operator, makes it possible to 

construct representations that afford valid causal induction and inference – induction of 

causal relations that support manipulation and control, and inference about the effect of 

such manipulation, be it from actual physical intervention or merely counterfactual 

thought about intervention. The do operation is precisely what's required to distinguish 

representations of probability like Bayes' nets from representations of causality. 

Overall, the findings provide qualitative support for the causal modeling framework 

(cf.  Glymour, 2001). The causal modeling analysis starts with the assumption that people 

construe the world as a set of autonomous causal mechanisms and that thought and action 
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follow from that construal. The problems of prediction, control, and understanding can 

therefore be reduced to the problems of learning and inference in a network that 

represents causal mechanisms veridically. Once a veridical representation of causal 

mechanisms has been established, learning and inference can take place by intervening 

on the representation rather than on the world itself. But none of this can be achieved 

without a suitable representation of intervention. The do operator is intended to allow 

such a representation and the studies reported herein provide some evidence that people 

are able to use it correctly to reason. 

Representing intervention is not always as easy as forcing a variable to some value 

and cutting the variable off from its causes. Indeed, most of the data reported here show 

some variability in people's responses. People are not generally satisfied to simply 

implement a do operation. People often want to know precisely how an intervention is 

taking place. A surgeon can't simply tell me that he's going to replace my knee.  I want to 

know how, what it's going to be replaced with, etc. After all, knowing the details is the 

only way for me to know with any precision how to intervene on my representation, 

which variables to do, and thus what can be safely learned and inferred. 

Causal reasoning is not the only mode of reasoning. People have a variety of frames 

available to apply to different problems (Cheng & Holyoak, 1985).  Mental models serve 

particularly well in some domains like syllogistic reasoning (Bara & Johnson-Laird, 

1984) and sometimes reasoning is associative (see Sloman, 1996).  The presence of a 

calculus for causal inference however provides a means to think about how people learn 

and reason about the interactions amongst events over time. 
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Table 1.  Percentages of participants responding "yes" to two questions about each 

scenario in both Causal and Conditional conditions of Experiment 1.  “D holds” and “A 

holds” refer to questions about variables D and A respectively in the Abstract scenario 

and corresponding questions for the Robot and Political scenarios. 

 
 Causal  Conditional  

Scenario D holds A holds D holds A holds 

Abstract 80 79 57 36 

Robot 80 71 63 55 

Political 75 90 54 47 
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Table 2.  Percentages of participants responding "yes" to two questions about each 

scenario in both Causal and Conditional conditions of Experiment 2.  “E holds” and “B 

holds” refer to questions about variables E and B respectively in the Abstract scenario 

and corresponding questions for the Robot and Political scenarios. 

 
 Causal  Conditional  

Scenario E holds B holds E holds B holds 

Abstract 70 74 45 50 

Robot 90 55 75 45 

Political 75 90 45 80 
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Table 3.  Percentages of participants responding "yes" to two questions involving explicit 

intervention about each scenario in both Causal and Conditional conditions of 

Experiment 3.  “E holds” and “B holds” refer to questions about variables E and B 

respectively in the Abstract scenario and corresponding questions for the Robot and 

Political scenarios. 

 
 Causal  Conditional  

Scenario E holds B holds E holds B holds 

Abstract 75 80 50 67 

Robot 75 75 83 67 

Political 65 90 56 83 
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Table 4.  Percentages of participants responding "yes" to questions in the Rocketship 

scenario of Experiment 4 given questions with antecedents non-explicitly or explicitly 

prevented. 

 
Question Non-explicit Prevention Explicit Prevention 

i. if not B, then A? 68 89 

ii. if not A, then B?     2.6      5.3 

 

 



Undoing effect in causal reasoning 
47 

 

Table 5.  Percentages of participants responding "yes" to questions in the Richman 

scenario of Experiment 5 given in Nonexplicit and Explicit Causal and Conditional 

conditions. 

 
Nonexplicit Prevention Explicit Prevention Conditional 

37 100 30 
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Table 6.  Percentages of participants responding "yes" to two questions in the three 

billiard ball problems of Experiment 6.  “Ball 1 moves” and “Ball 3 moves” refer to 

questions 1 and 2 of Experiment 6, respectively. 

 
 Ball 1 moves Ball 3 moves 

Causal 0.80 0.10 

Correlational 0.97 0.40 

Conditional 0.45 0.33 
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Table 7.  Mean probability judgments on 1-5 scale for two questions in Experiment 7, 

four types of intervention and causal and conditional versions, averaged across three 

scenarios.  P(C|~B) refers to question i. and P(A|~B) to question ii. 

 

 Causal Conditional   

 P(C|~B) P(A|~B) P(C|~B) P(A|~B) 

2.4 3.2 2.6 3.0 

2.3 2.7 2.8 3.3 

2.3 3.9 3.0 4.1 

Unspecified 

Observational 

Interventional 

Counterfactual 2.1 3.9 2.9 4.3 

 

 


