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Abstract Robotics is expected to play a major role in the agricultural do-
main, and often multi-robot systems and collaborative approaches are men-
tioned as potential solutions to improve efficiency and system robustness.
Among the multi-robot approaches, swarm robotics stresses aspects like flex-
ibility, scalability and robustness in solving complex tasks, and is considered
very relevant for precision farming and large-scale agricultural applications.
However, swarm robotics research is still confined into the lab, and no applica-
tion in the field is currently available. In this paper, we describe a roadmap to
bring swarm robotics to the field within the domain of weed control problems.
This roadmap is being instantiated within the SAGA experiment, founded
within the context of the ECHORD++ European project. Together with the
experiment concept, we introduce baseline results for the target scenario of
monitoring and mapping weed in a field by means of a swarm of UAVs.

1 Introduction

Despite being studied for about 20 years, swarm robotics is still confined
into laboratory settings [8, 23, 9] and no commercial application can be ac-
knowledged to date, to the best of our knowledge. This has several reasons,
including the need for cost-effective hardware solutions, the lack of established
user-swarm interaction methodologies, and the need of convincing use-cases
and business models. Nevertheless, research in swarm robotics has produced
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a large knowledge base that can be exploited to deliver concrete applications
[6, 27]. Additionally, several proposals have been advanced to provide engi-
neering methods for swarm robotics, independently of the specific domain
[11, 3, 21]. Hence, time is mature for the last missing step: approaching a
concrete real-world problem with a genuine swarm robotics approach.

Concerning real-world problems, agriculture represents a very challenging
and increasingly important domain to be tackled by robotics solutions. Be-
yond mere automation, robots offer additional means to truly implement a
precision agriculture approach [1, 10]. In this respect, distributed autonomous
robotic systems stand as appealing solutions. Indeed, agricultural problems
are characterised by unstructured environments, large spatial distributions
and heterogeneities that naturally call for flexible and robust multi-robot ap-
proaches. The application of swarm intelligence to agricultural robotics can
lead to disruptive innovation, thanks to the miniaturisation of hardware and
the cooperation within a highly redundant system. On the one hand, minia-
turisation would allow to apply solutions only when and where they are really
needed, avoiding soil compaction typical of large machines and bringing the
concept of precision agriculture to the highest realisation thanks to proximal
sensing and actuation [14]. On the other hand, redundancy and cooperation
within a distributed robotic system can provide resilience and robustness to
faults, and can result in super-linear performance, so as to maximise the
effectiveness of the group as a whole beyond the sensing and information-
processing abilities of individual units (e.g., exploiting biological models of
information retrieval and integration [2, 21]).

Among the different problems faced in precision agriculture, automated
weed control is certainly a priority to reduce labor and operation costs,
while maximising yield and minimising/avoiding the usage of chemicals. Au-
tonomous weed control systems require (i) efficient navigation within the
field, (ii) automatic detection and identification of weeds, (iii) mechanisms
for individual weed removal and control, and (iv) field mapping to support
decision-making at a global scale [25]. Out of the above issues, weed recogni-
tion and field mapping still represent important challenges for an automatic
weed control system [24, 25]. In this respect, various robotic solutions are be-
ing developed, with unmanned aerial vehicles (UAVs) recently having a large
share, thanks to (i) the reduced costs and the increased reactivity and reso-
lution with respect to satellite or other aerial photogrammetry technologies,
and (ii) the ability to move over and rapidly map the field at a higher speed
with respect to ground vehicles [4, 28]. Despite recent efforts, commercial
applications are still underdeveloped, and progress is still required in both
automatic recognition and mapping [24].

Monitoring and mapping is a task that can be suitably tackled with a
swarm robotics approach. By exploiting the power of collective intelligence,
it is possible to overcome the individual perceptual limitations and deal with
uncertain environmental conditions (e.g., due to plant differences and chang-
ing weather conditions). As weed tends to grow in patches over the field, a
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precise mapping can be achieved by allocating more resources/time to such
patches, while other areas can be only mildly monitored. A uniform cover-
age is therefore sub-optimal, while a flexible and adaptive strategy can be
more efficient, especially if carried out in a parallel/coordinated way by a
robot swarm. Starting from these insights, we have developed a roadmap for
the application of a genuine swarm robotics approach to the weed monitor-
ing/mapping problem, which is discussed in Section 2. This roadmap is imple-
mented within the experiment SAGA: Swarm robotics for AGricultural Ap-
plications. The experiment is founded within the context of the ECHORD++
EU Project,1 and aims to demonstrate the usage of a group of small UAVs to
collectively monitor a field and distributedly map the presence of weeds. Such
an autonomous monitoring/mapping system can drastically reduce the costs
of timely detection and supports an optimal planning (both for operation
timing and field coverage) of weed removal.

The paper is organised as follows. In Sect. 2, we discuss the concept and
the starting point of the roadmap in relation to the state of the art, and we
indicate the activities planned to tackle the weed monitoring and mapping
problem described above. In Sect. 3, we introduce an abstract model for
multi-robot field monitoring, and we describe baseline results obtained with a
simple decentralised approach. Sect. 4 closes the paper with some discussions
and perspective on the commercial application of swarm robotics solutions
for the agricultural domain.

2 Concept and background

Weed monitoring and mapping is a tough problem that determines the daily
activities in a farm. Fig. 1 (left) shows a typical situation after planting
seedlings, with small weeds emerging due to field irrigation. In current organic
farming practice, weeds of this size are mechanically removed using machines
that do not harm the young crop. These machines only work if the weeds
have a specific small size: act too early and weed would re-emerge, intervene
too late and weed would not be removed efficiently. Therefore, the timing of
this operation is crucial. To decide which areas to weed when, farmers spend
a lot of time monitoring their fields. The system proposed within the SAGA
experiment aims to take over this monitoring task, and to generate task maps
for future autonomous weeding robots, telling them which areas to work on
and how to plan their paths.

More specifically, SAGA will provide an automatic weed monitoring and
mapping system by means of a swarm of UAVs able to patrol the field,
recognise the presence of weeds, dedicate resources to the most interesting
areas and collectively build a field map indicating areas with different urgency

1 Founded under the EU’s 7th Framework Programme (ID: 601116), see http://echord.eu
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Fig. 1 Left: Young lettuce crop (1) with two types of surfacing weeds (2 and 3). In SAGA,

we will perform object detection or semantic segmentation on images like this. Right: a

close-up view of the PrecisionScout, the UAV produced by Avular B.V. and exploited
within the SAGA experiment.

of intervention. All this is to be obtained through a genuine swarm robotics
approach, featuring decentralised control and flexible and scalable behaviour.

In this way, SAGA instantiates a roadmap for the demonstration of swarm
robotics applied to precision farming. The SAGA concept represents a nov-
elty within the agricultural robotics domain, despite significant effort and
resources being dedicated to agricultural robotics research, including multi-
robot approaches. For instance, RHEA and Flourish focus on the coordi-
nation mechanisms for multiple ground and/or aerial vehicles; ASETA [12]
focuses on mapping weeds with a UAV; and the ECHORD++ experiment
MARS deploys a group of ground robots for seeding operations.2 In all these
projects, collaboration between one or more UAVs and/or one or more un-
manned ground robots is envisaged, exploiting planning for multi-robot co-
ordination. However, results are still very preliminary, and none of the above
projects takes a genuine swarm robotics approach. In contrast, we propose a
solution to the monitoring and mapping problem that is completely decen-
tralised, so that desired properties like robustness and scalability are taken
into account at design time.

2.1 Collective-level monitoring and mapping

The collective-level control is responsible for the overall mission accomplish-
ment. Instead of a-priori planning the mission for the whole group, we will
exploit swarm robotics techniques in which the group behaviour emerges from
self-organisation, hence providing flexibility, robustness to faults and scalabil-
ity with group size. Our goal is to devise collective strategies with an optimal
trade-off between distributed exploration and timely weed recognition.

2 RHEA: http://www.rhea-project.eu; Flourish: http://flourish-project.eu; MARS :
http://echord.eu/mars. Websites accessed on July the 5th, 2016.
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The study of the collective monitoring and mapping behaviour will be ini-
tially performed in simulation (see also Section 3), and different bio-inspired
algorithms will be evaluated. In particular, we will consider honeybee foraging
and collective decision-making as source of inspiration, and will exploit a de-
sign pattern to implement such behaviours in UAV swarms [20, 21]. This will
provide the mechanisms to explore the field and allocate resources during the
monitoring activities: UAVs will be recruited to monitor those areas in the
field that have been identified as potentially containing weed patches, while
weedless areas are quickly abandoned by the swarm. In this way, resource
allocation is adapted to the field heterogeneities, and error-prone individual
inspection will be compensated for through collaborative re-sampling. Ad-
ditionally, we will consider the emergence of a categorisation system from
peer-to-peer interactions [2], and implement a collective mapping behaviour
as a categorisation problem of different areas of the field, so that labelling
of different areas will result from a consensus process among the UAVs that
individually estimated the presence of weeds.

2.2 On-board vision for weed detection and navigation

The on-board vision system of each individual UAV has to perform object
detection or semantic segmentation on images like in Fig. 1 (left), to count the
number of weeds above a specific size or otherwise measure their development.
The results of each image have to be mapped to real-world coordinates, using
absolute and relative pose estimates from other sensors (e.g., GPS, IMU).
This provides the basis for timing and path planning as described above.

Current robotics approaches employ unmanned vehicles (e.g., Bonirob [4])
for weed detection and removal [19, 18, 15]. As demarcation strategy, Bonirob
and similar platforms use a protective cover with artificial lighting and cam-
eras underneath. This is a suboptimal solution that simplifies the vision prob-
lem with constant, shadowless light conditions.

In previous work, we demonstrated the use of SURF features, bag-of-
visual-words clustering, and support vector machines (SVMs) to classify im-
age patches as crop or weed [26]. This method can handle strong light vari-
ations and shadows from direct sunlight. The approach can be combined
with a sliding window approach or selective search to detect objects in the
whole image. Another option is to oversegment images into superpixels, and
then perform feature extraction and classification on each superpixel (i.e., se-
mantic segmentation), optionally improved with smoothness-based and other
priors (e.g., exploiting the expected crop pattern). For both approaches, prior
background removal can be beneficial. These methods need to be adapted for
usage on the UAVs, exploiting the on-board camera and processing power.

On-board vision can also support the individual motion control. In [5],
modified excessive green, Otsu’s method, and the Hough transform were
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combined to find crop rows in a field, and dynamic extrinsic camera cali-
bration and PID-controllers were used to make the UAV follow the detected
crop rows. These methods can be used to support GPS-based navigation, or
navigation based on ultra-wideband beacons (UWB, see below).

2.3 Hardware enhancement for swarm operations

We have chosen to exploit small and light UAVs for the mapping operations,
as they can quickly reach any area of the field and monitor from close-by
the presence of weeds. UAV research is a hot topic to date, pushed by the
huge development of commercial flying drones, mainly thanks to the estab-
lishment of multi-rotor helicopters bringing to the consumer and industrial
market stable and easily controllable platforms. However, to date UAVs are
usually not conceived for group operation, and hardware adaptations are re-
quired to have UAVs communicate with each other and coordinate their oper-
ations. Additionally, if we consider autonomous flight with on-board sensing,
research is still ongoing due to the size and payload constraints associated
with aerial vehicles, as well as to the short battery lifetime [13, 22]. Specific
control issues emerge for multi-robot settings, which render approaches with
individual robot labelling impractical due to the exponential explosion of the
state space, and call for low-dimensional abstractions of the group [17]. Addi-
tionally, specific sensory systems are required for collision-free flight and net-
worked operations [7, 22]. In summary, several state-of-the-art technologies
need to be integrated in a single platform to support swarm operations [29].

Within SAGA, hardware development to enable swarm operation will start
from the PrecisionScout UAV platform (see Fig. 1 right), which is developed
and produced by Avular B.V. in the Netherlands.3 The PrecisionScout is an
industrial-grade quadcopter with four motors and is able to fly up to 30 min-
utes on a single charge. The system is designed for inspection tasks where
a high level of accuracy and safety is required. Key features include a triple
redundant autopilot, five inertial measurement units (IMUs) and RTK-GPS.
The location and orientation data will be synchronized with the imagery from
the RGB camera, and the corresponding object detections/semantic segmen-
tation. The payload itself is modular and the components are separated from
the flight-critical systems, making it particularly safe for the development of
real-time vision applications.

The standard PrecisionScout needs to be equipped with several additional
hardware modules as well as software communication protocols. The hard-
ware modules include radio-communication between multiple UAVs, based on
UWB technology, which will provide at the same time self-localisation with
respect to stationary beacons and communication abilities between UAVs.

3 Avular is an SME partner of the SAGA experiment consortium (http://avular.com).
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Additionally, the PrecisionScout must be enhanced with onboard vision and
processing power so as to run the monitoring and motion algorithms. A de-
sign based on the Nvidia Jetson4 will be developed allowing to use the same
processor for both machine vision and motion control.

3 Baseline simulation of collective monitoring

Field monitoring is a fundamental activity in weed control. It consists of
patrolling the field and detecting the weed presence and location. This activ-
ity is generally supported by absolute positioning systems (e.g., RTK-GPS)
which allows geofencing and planning of the optimal path. The most common
approach is a “sweeping” strategy, in which a ground or aerial vehicle fol-
lows a zigzag course. With multiple vehicles, the field can be decomposed in
non-overlapping areas to be assigned to different UAVs [16]. In agricultural
applications, it is often the case that coverage strategies allow to capture
large amounts of images to be stitched together and analysed offline [28].
Clearly, these strategies do not provide robustness against failure of UAVs
within the group, neither do they deal optimally with high error-detection
rates. Indeed, a priori path planning and a posteriori analysis do not allow
to adapt the monitoring strategy to the actual weed distribution and to ex-
ploit online visual processing to influence the field coverage. Within SAGA,
we aim to produce a completely decentralised solution that exploits online
visual feedback to direct the individual search strategy. In this section, we
introduce a weed monitoring model and multi-agent simulations developed
to quickly test different decentralised strategies.

3.1 Weed monitoring model

We consider an abstract scenario in which a square field of side L needs to be
monitored for the presence of weeds. The field is virtually divided in square
cells of side `, for a total of L/` cells per side, and each cell i can contain one
or more weed units, resulting in the weed density ρi. We consider here Nw
units that are distributed either uniformly in the field, or heterogeneously
in Np patches, where each patch p is obtained as a gaussian spread of items
around the patch center xp (standard deviation, σp, see Fig. 2, left column).

Each cell can be visited by a UAV—hereafter, agent—several times. At
each visit k > 0, an agent a inspects the cell i for τv seconds and iteratively
updates the locally estimated weed density ρ̂i,a as follows:

ρ̂i,a(k + 1) = (1− φw)ρ̂i,a(k) + φwρi, 0 ≤ φw ≤ 1, ρ̂i,a(0) = 0, (1)

4 http://www.nvidia.com/object/embedded-systems.html.
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where φw represents the percentage of weed that can be correctly detected in
one visit: when φw = 1 there is no detection error and one visit is sufficient,
but when φw < 1 more than one visit is necessary. The exponential average
models detection from multiple visits as being independent from each other.
At each visit k > 0, the agent a also computes the detection improvement:

δi,a(k) =
ρ̂i,a(k)− ρ̂i,a(k − 1)

ρ̂i,a(k)
, (2)

which can be employed to label cells as completely monitored when δi,a ≈ 0,
or still requiring additional visits.

For evaluation purposes, we compute the globally estimated weed density
ρ̂i of cell i by aggregating information from multiple agents, in a similar way as
in equation (1). Additionally, we record the number of visits κi that each cell
i receives. We consider the field completely covered and correctly inspected
when ∀i, κi > 0 ∧ ρ̂i = ρi. We evaluate the efficiency of the monitoring
activities by looking at the time tc in which the field is first completely
covered, and at the time tw in which all weed items are correctly detected.

3.2 Baseline collective monitoring strategy

The division of the field in cells allows to simplify the motion strategy of each
agent, and to ensure that no two agents inspect the same cell at the same time.
We assume here a simple collision-free model in which agents are treated as
point-mass particles with maximum speed v. Hence, the monitoring strategy
reduces to the decision on which field cell to visit next.

As a baseline approach, we implement a random-walk-like strategy in
which each agent a decides the next cell to visit according to a 2D gaus-
sian distribution. More specifically, the likelihood to choose cell i by agent a
is computed as follows:

Fa(i, j;σj , γi) = γie

−d2ij
2σ2
j , σj =

σ̂

1 + ρ̂j,a
, γi =

{
1 κi = 0
δi,a κi > 0

, (3)

where dij is the Euclidean distance of cell i from the current cell j, and σ̂ rep-
resents the base spread of the gaussian function. Given the likelihood value
for each cell i, a roulette-wheel selection is performed to choose the next cell
to visit. In this process, the current cell is excluded, as well as the cells tar-
geted by other agents, which are available thanks to agent-agent communica-
tion.5 By choosing cells according to equation (3), we ensure local exploration
thanks to the gaussian spread, we promote longer displacements when the
locally estimated weed density ρ̂j,a is low (i.e., high values of σj), and we scale

5 We assume here for simplicity a fully connected communication network among agents.
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Fig. 2 Results of the baseline collective monitoring strategy for uniform (top) or patchy
(bottom) weed distribution. Left: example density map of weed distribution, with darker

areas corresponding to higher weed density. Center: Average value for the coverage time tc
(solid lines) and for the monitoring time tw (dashed lines) plotted against φw, for various
values of N . Right: Scaling of tc (solid lines) and tw (dashed lines) with the group size N .

The black solid line is a guide for the eye corresponding to a power-law scaling t ∝ N−0.9.
Insets: relative performance computed against the optimal sweeping behaviour. Statistical

error bars are not visible on the graph scale.

the likelihood according to the latest detection improvement δi,a, which goes
to zero the more the estimated weed density approaches the real value, so
as to avoid to often revisit the same cells. To summarise, the above strategy
implements an isotropic random walk, giving lower importance to areas that
have already been sufficiently covered. Note that this baseline strategy does
not exploit agent-agent interactions, apart from excluding those cells that are
already targeted by some other agent. Hence, much improvement is expected
by the introduction of feedback mechanisms among agents.

For comparison, we developed a sweeping strategy in which a single agent
â covers the whole field by moving through adjacent cells every time the
detection improvement δj,â on the current cell j falls to zero. We divide the
coverage time tâc and the monitoring time tâw by the group size N , so to obtain
the optimal performance t?c = tâc/N and t?w = tâw/N of a group implement-
ing the sweeping strategy on a field partitioned in N non-overlapping areas.
As mentioned above, the sweeping strategy—although optimal from the ef-
ficiency point of view—is not resilient and robust against failures, hence the
motivation to develop a collective monitoring system.
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3.3 Experimental results

Given the system described above, we have performed preliminary investiga-
tions to understand the influence of the different parameters on the global
outcome. We vary the group size N ∈ {10, 50, 100} and the weed detection
rate φw ∈ {0.7, 0.8, 0.9, 1.0}, and for each configuration we execute 200 evalu-
ation runs in randomly generated fields with either the uniform or the patchy
weed distribution. We observe that the coverage time tc is independent of the
weed detection rate for both uniform and patchy weed distribution (solid lines
in the center plots of Fig. 2). This is expected given that the choice to visit
new cells is not affected by φw. The average values of tc are also similar for
uniform and patchy distributions, as coverage requires to visit every cell in
the field at least once. What changes significantly is the course of tw (dashed
lines in Fig. 2), which is decreasing for increasing values of φw, and above
all presents lower values for the patchy weed distribution. Indeed, for high
values of φw, only few visits are required per cell to completely inspect it
(at most 2 visits per agent when φw = 1), and this has a positive impact
on reducing the detection time: in the uniform distribution case, tw becomes
comparable to tc, as weeds can be found anywhere in the field; in the patchy
distribution case, tw gets significantly lower as weed patches are completely
detected before the entire field is fully covered.

For what concerns the scaling with the group size N , it is possible to appre-
ciate a power-law decay t ∝ Nα for both uniform and patchy weed distribu-
tion, with exponent α ≈ −0.9, not too distant from the ideal case of α = −1
(right plots in Fig. 2). This confirms that the provided solution—although im-
provable exploiting agent-agent interactions—scales very well with the group
size. The performance relative to the optimal weeding strategy is shown in
the insets, where λc = tc/t

?
c and λw = tw/t

?
w are plotted. It is possible to

notice that the collective monitoring strategy is in general slower by a fac-
tor of 2 to 9, with best performance for low values of φw, especially for the
coverage time, and for the monitoring time in the uniform distribution. For
the patchy distribution, monitoring is 3 to 5 times slower than the optimal
strategy, but performance slightly improves for φw = 1.

4 Conclusions

In this paper, we have presented the SAGA concept and the roadmap it
implements to bring swarm robotics into the field. We have also proposed
an abstract model for weed monitoring and preliminary results exploiting a
simple random walk strategy, which constitute a baseline against wich to test
improved collective monitoring approaches. The baseline monitoring strategy
is efficient against a patchy weed distribution, deals well with low rates of
weed detection and present good scalability with the group size. It exploits
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multiple visits from different agents to obtain a complete monitoring. Given
the absence of interaction among agents however, certain cells may be largely
over-sampled, while others may receive insufficient attention hence requiring
longer time to be monitored. Future work within the SAGA experiment will
be dedicated to the engineering of a suitable strategy that minimises the gap
with the optimal one, and that at the same time guarantees properties like
resilience, robustness and scalability. Validation of the abstract model for
weed monitoring with field experiments will be a key issue.

With the SAGA experiment, our goal is not only to demonstrate the tech-
nical feasibility of a swarm robotics approach to precision farming, but also
to evaluate its potential economic impact. Indeed, one of the tenets of the
swarm robotics approach is the usage of a large number of small and rela-
tively simple robots, as opposed to large and expensive machines. Verifying
the economic value of the swarm robotics approach in a practical applica-
tion scenario is important for future developments of the field. We intend
to use the knowledge gained and the results of the experiments to evalu-
ate the economic advantages and drawbacks of a swarm robotics approach
to precision farming. Weeding is actually a complex problem that is asso-
ciated with potential yield loss and high labour costs. Our assessment will
therefore include factors related to increased crop yield, reduction of labour
cost, operation efficiency, potential miniaturisation/optimisation of robotic
components, flexibility/reusability of solutions and size scalability.

Although spraying or other forms of weed removal (either from UAVs or
ground vehicles) are not considered within SAGA, the potential impact of
swarm robotics for agricultural applications will be fully unleashed when a
complete solution can be delivered. Future developments should hence take
into account not only decentralised sensing, but also parallel and collaborative
approaches to weed control. In this way, it will be possible to put forward
the relevance of swarm robotics also for other application domains.

References

1. Auat Cheein, F.A., Carelli, R.: Agricultural Robotics: Unmanned Robotic Service

Units in Agricultural Tasks. IEEE Industrial Electronics Magazine 7(3), 48–58 (2013)
2. Baronchelli, A., Gong, T., Puglisi, A., Loreto, V.: Modeling the emergence of univer-

sality in color naming patterns. Proceedings of the National Academy of Sciences of
the United States of America 107(6), 2403–2407 (2010)

3. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomo-

geneous robot swarms with application to commercial pollination. In: Proceedings of
the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011),
pp. 378–385. IEEE (2011)

4. Biber, P., Weiss, U., Dorna, M., Albert, A.: Navigation system of the autonomous
agricultural robot Bonirob. In: Workshop on Agricultural Robotics: Enabling Safe,
Efficient, and Affordable Robots for Food Production (2012)

5. van Boheemen, K.: Autonomous UAVs in agriculture, navigation and control using
real-time image analysis. BSc thesis Wageningen University (2015)



12 Trianni et al.

6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from

the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)
7. Doitsidis, L., et al.: Optimal surveillance coverage for teams of micro aerial vehicles in

GPS-denied environments using onboard vision. Autonomous Robots 33(1-2), 173–188

(2012)
8. Dorigo, M., et al.: Swarmanoid: A Novel Concept for the Study of Heterogeneous

Robotic Swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)
9. Gauci, M., Chen, J., Li, W., Dodd, T.J., Gross, R.: Self-organized aggregation without

computation. The International Journal of Robotics Research 33(8), 1145–1161 (2014)
10. Gebbers, R., Adamchuk, V.I.: Precision Agriculture and Food Security. Science

327(5967), 828–831 (2010)
11. Hamann, H., Wörn, H.: A framework of space–time continuous models for algorithm

design in swarm robotics. Swarm Intelligence 2(2-4), 209–239 (2008)
12. Hansen, K.D., Ruiz, F.G., Kazmi, W.: An Autonomous Robotic System for Mapping

Weeds in Fields. In: 8th IFAC Symposium on Intelligent Autonomous Vehicles, 2013,
pp. 217–224 (2013)

13. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial

vehicles. The International Journal of Robotics Research 31(11), 1279–1291 (2012)
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