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Summary

In this chapter, we present and discuss a number of fundamental collective
behaviours studied within the swarm robotics domain. Swarm robotics is a
particular approach to the design and study of multi-robot systems, which em-
phasises decentralised and self-organising behaviours that deal with limited in-
dividual abilities, local sensing and local communication. The desired features
for a swarm robotics system are flexibility to variable environmental conditions,
robustness to failure and scalability to large groups. These can be achieved
thanks to well-designed collective behaviours—often obtained via some sort of
bio-inspired approach—that rely on cooperation among redundant components.
In this chapter, we discuss the solutions proposed for a limited number of prob-
lems common to many swarm robotics systems—namely aggregation, synchro-
nisation, coordinated motion, collective exploration and decision-making. We
believe that many real-word applications subsume one or more of these prob-
lems, and tailored solutions can be developed starting from the studies we review
in this chapter. Finally, we propose possible directions for future research and
discuss the relevant challenges to be addressed in order to push forward the
study and the applications of swarm robotics systems.

1.1 Introduction

Imagine the following scenario: in a large area there are multiple items that
must be reached, and possibly moved elsewhere or processed in some particu-
lar way. There is no map of the area to be searched, and the area is rather
unknown, unstructured, and possibly dangerous for the intervention of humans
or any valuable asset. The items must be reached and processed as quickly
as possible, as a timely intervention would correspond to a higher overall per-
formance. This is the typical scenario to be tackled with swarm robotics. It
contains all the properties and complexity issues that make a swarm robotics
solution particularly appropriate. Parallelism, scalability, robustness, flexibility
and adaptability to unknown conditions are features that are required from a
system confronted with such a scenario, and exactly those features are sought
in swarm robotics research.

Put in other terms, swarm robotics promises the solution of complex prob-
lems through robotic systems made up of multiple cooperating robots. With
respect to other approaches in which multiple robots are exploited at the same
time, swarm robotics emphasises aspects like decentralisation of control, limited
individual abilities, lack of global knowledge and scalability to large groups.

One important aspect that characterises a swarm robotics system concerns
the robotic units, which are unable to solve the given problem individually. The
limitation is given either by physical constraints that would prevent the single
robot to individually tackle the problem (e.g., the robot has to move some items
that are too heavy), or by time constraints that would make a solitary action
very inefficient (e.g., there are too many items to be collected in a limited time).
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Another source of limitation for the individual robot comes from its inability
to acquire a global picture of the problem, having only access to partial (local)
information about the environment and about the collective activity. These lim-
itations imply the need for cooperation to ensure task achievement and better
efficiency. Groups of autonomous cooperating robots can be exploited to syner-
gistically achieve a complex task, by joining forces and sharing information, and
to distributedly undertake the given task and achieve higher efficiency through
parallelism.

The second important aspect in swarm robotics is redundancy in the system,
which is intimately connected with robustness and scalability. Swarm robotics
systems are made by homogeneous robots (or by relatively few heterogeneous
groups of homogeneous robots). This means that the failure of a single or few
robots is not a relevant fact for the system as a whole, because the failing robot
can be easily replaced by another teammate. Differently from a centralised
system, in a swarm robotics system there is no single point of failure, and every
component is interchangeable with other components. Redundancy, distributed
control and local interactions also allow for scalability, enabling the robotic
system to seamlessly adapt to varying group sizes. This is a significant advantage
with respect to centralised systems, which would present an exponential increase
in complexity for larger group sizes.

All the above features being desiderata, the problem remains on how to
design and implement such a robotic system. The common starting point in
swarm robotics is the biological metaphor, for which the fundamental mecha-
nisms that govern the organisation of animal societies can be distilled in simple
rules to be implemented in the robotic swarm. This approach allowed to extract
the basic working principles for many collective behaviours, and several exam-
ples will be presented in this chapter. However, it is worth noting that swarm
robotics systems are not constrained to mimicking nature. Indeed, in many
cases there is no biological example to be taken as reference, or the mechanisms
observed in the natural system are too difficult to be implemented in the robotic
swarm (e.g., odour perception is an open problem in robotics, preventing to eas-
ily exploit pheromone-based mechanisms by using real chemicals). Still, even
in those systems that have no natural counterpart, the relevant property that
should be present is self-organisation, for which group behaviour is the emer-
gent result of the numerous interactions among different individuals. Thanks
to self-organisation, simple control rules repeatedly executed by the individual
robots may result in complex group behaviours.

If we consider the scenario presented at the beginning of this chapter, it is
possible to recognise a number of problems common to many swarm robotics sys-
tems, which need to be addressed in order to develop suitable controllers. One
first problem in swarm robotics is having robots get together in some place,
especially when the robotic system is composed by potentially many individu-
als. Getting together (i.e., aggregation) is the precondition for many collective
behaviours, and needs to be addressed according to the particular characteris-
tics of the robotic system and of the environment in which it must take place.
The aggregation problem is discussed in Section 1.2. Once groups are formed,
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robots need some mechanism to stay together and to keep a coherent organisa-
tion while performing their task. A typical problem is therefore how to maintain
such coherence, which corresponds to ensuring the synchronisation of the group
activities (Section 1.3), and to keep the group in coordinated motion when the
swarm must move across the environment (Section 1.4). Another common prob-
lem in swarm robotics corresponds to searching together and processing some
items in the environment. To this aim, different strategies can be adopted to
cover the available space, and to identify relevant navigation routes without
resorting to maps and global knowledge (see Section 1.5). Finally, to maintain
coherence and efficiency, the swarm robotics system is often confronted with
the necessity to behave as a single whole. Therefore, it must be endowed with
collective perception and collective decision mechanisms. Some examples are
discussed in Section 1.6. For each of these problems, we describe some seminal
work that produced solutions in a swarm robotics context. In each section, we
describe the problem along with some possible variants, the biological inspi-
ration and the theoretical background, the relevant studies in swarm robotics,
and a number of other works that are relevant for some particular contribution
given to the specific problem.

1.2 Getting together: Aggregation

Aggregation is a task of fundamental importance in many biological systems.
It is the basic behaviour for the creation of functional groups of individuals,
and therefore supports the emergence of various forms of cooperation. Indeed,
it can be considered a prerequisite for the accomplishment of many collective
tasks. In swarm robotics too, aggregation has been widely studied, both as a
standing-alone problem or within a broader context. Speaking in general terms,
aggregation is a collective behaviour that leads a group of agents to gather in
some place. Therefore, from a (more or less) uniform distribution of agents
in the available space, the system converges to a varied distribution, with the
formation of well recognisable aggregates. In other words, during aggregation
there is a transition from a homogeneous to a heterogeneous distribution of
agents.

1.2.1 Variants of the aggregation behaviour

Aggregation can be achieved in many different ways. The main issue to be con-
sidered is whether or not the environment contains pre-existing heterogeneities
that can be exploited for aggregation: light or humidity gradients (think of flies
or sow bugs), corners, shelters and so forth represent heterogeneities that can
be easily exploited. Their presence can therefore be at the basis of a collective
aggregation behaviour, which however may not exploit interactions between dif-
ferent agents. Instead, whenever heterogeneities are not present (or cannot be
exploited for the aggregation behaviour), the problem is more complex. The
agents must behave in order to create the heterogeneities that support the for-
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Figure 1.1: Aggregation process based on a diffusing signal that creates an in-
tensity gradient. (a) Agents individually emit a signal, and move in the direction
of higher concentration. (b) The individual signals sum up to form a stronger
intensity gradient in correspondence of forming aggregates. (c) A positive feed-
back loop amplifies the aggregation process, until all agents are in the same
cluster (d).

mation of aggregates. In this case, the basic mechanism of aggregation relies on
a self-organising process based on a positive feedback mechanism. Agents are
sources of some small heterogeneity in the environment (e.g., being the source
of some signal that can be chemical, tactile or visual). The more aggregated
agents, the higher the probability to be attracted by the signal. This mechanism
leads to amplification of small heterogeneities, leading to the formation of large
aggregates.

1.2.2 Self-organised aggregation in biological systems

Several biological systems present self-organised aggregation behaviours. One
of the best studied examples is given by the cellular slime mold Dictyostelium
discoideum, in which aggregation is enabled by self-generated biochemical sig-
nals that support the migration of cells and the formation of a multicellular
body [10, 79]. A similar aggregation process can be observed in many other
unicellular organisms [14]. Social and pre-social insects also present multiple
forms of aggregation [28, 44]. In all these systems, it is possible to recognise two
main variants of the aggregation process. On the one hand, the agents can emit
a signal that creates an intensity gradient in the surrounding space. This gra-
dient enables the aggregation process: agents react by moving in the direction
of higher intensity, therefore aggregating with their neighbours (see Figure 1.1).
On the other hand, aggregation may result from agents modulating their stop-
ping time in response to social cues. Agents have a certain probability to stop
and remain still for some time. The vicinity to other agents increases the prob-
ability of stopping and of remaining within the aggregate, eventually producing
an aggregation process mediated by social influences (see Figure 1.2). In both
cases, the same general principle is at work. Aggregation is dependent on two
main probabilities: the probability to enter an aggregate, which increases with
the aggregate size, and the probability to leave an aggregate, which decreases
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Figure 1.2: Aggregation process based on variable probability of stopping within
an aggregate. (a) Agents move randomly, and may stop for some time (grey
agent). (b) When encountering a stopped agent, other agents stop as well,
therefore increasing the size of the aggregate. (c) The probability to meet an
aggregate increases with the aggregate size for geometric reasons. Social in-
teractions modulate the probability of leaving the aggregate, which diminishes
with increasing number of individuals. (d) Eventually, all agents are in the same
aggregate.

accordingly. This creates a positive feedback loop that makes larger aggregates
more and more attractive with respect to small ones. Some randomness in the
system helps in breaking the symmetry and reaching a stable configuration.

1.2.3 Self-organised aggregation in swarm robotics

On the basis of the studies of aggregation in biological systems, various robotic
implementations have been presented, based on either of the two behavioural
models described above. Of particular interest is the work presented in [33], in
which the robotic system was developed to accurately replicate the dynamics
observed in the cockroach aggregation experiments presented in [44]. In this
work, a group of Alice robots [18] was used and their controller was imple-
mented by closely following the behavioural model derived from experiments
with cockroaches. The behavioural model consists of four main conditions: (i)
moving in the arena centre, (ii) moving in the arena periphery, (iii) stopping
in the centre, and (iv) stopping in the periphery. When stopping, the mean
waiting time is influenced by the number of perceived neighbours (for more de-
tails, see [33]). The group behaviour resulting from the interaction among Alice
robots was analysed with the same tools used for cockroaches (see [44, 33]).
The comparison of the robotic system with the biological model shows a very
good correspondence, demonstrating that the mechanisms identified by the be-
havioural model are sufficient to support aggregation in a group of robots, with
dynamics that are comparable to the one observed in the biological system. Ad-
ditionally, the robotic model constitutes a constructive proof that the identified
mechanisms really work as suggested.

This study demonstrates the approach of distilling in terms of simple rules
the relevant mechanisms that produce a given self-organising behaviour. A
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different approach consists in exploiting artificial evolution to synthesise the
controllers for the robotic swarm. This allows the user to simply define some
performance metric for the group, and let the evolutionary algorithm find the
controllers capable of producing the desired behaviour. This generic approach
has been exploited to evolve various self-organising behaviours, including aggre-
gation [30]. In this case, robots were rewarded to minimise their distance from
the geometric centre of the group, and to keep moving. The analysis of the
evolved behaviours revealed that in all cases robots are attracted by teammates
and repelled by obstacles. When a small aggregate forms, robots keep on mov-
ing thanks to the delicate balance between attractive and repelling forces. This
makes the aggregate continuously expand and shrink, slightly moving across
the arena. This slow motion of the aggregate makes it possible to attract other
robots or other formed aggregates in the vicinity, and result in a very good
scalability of the aggregation behaviour with respect to the group size. This
experiment revealed a possible alternative mechanism for aggregation, which is
not dependent on the probability of joining or leaving an aggregate. In fact,
robots here never quit an aggregate in which they are attracted. Rather, the
aggregates themselves are dynamic structures capable of moving within the en-
vironment, and in doing so they can be attracted by neighbouring aggregates,
until all robots belong to the same group.

1.2.4 Other studies

The seminal papers described above are representative of other studies, which
either exploit a probabilistic approach [45, 68], or rely on artificial evolution [4].
Approaches grounded on mathematical models and control theory are also worth
mentioning [2, 35]. Other variants of the aggregation behaviour can be consid-
ered. The aggregate may be characterised by an internal structure, that is,
agents in the aggregate are distributed on a regular lattice or form a specific
shape. In such cases, we talk about pattern/shape formation [69]. Another
possibility is given by the admissibility of multiple aggregates. In the studies
mentioned so far, multiple aggregates may form at the beginning of the aggre-
gation process, but as time goes by smaller aggregates are disbanded in favour
of larger ones, eventually leading to a single aggregate for the whole swarm.
However, it could be desirable to obtain multiple aggregates forming functional
groups of a specific size. In this case, it is necessary to devise mechanisms for
controlling the group size [47].

1.3 Acting together: Synchronisation

Synchronisation is a common phenomenon observed both in the animate and
inanimate world. In a synchronous system, the various components present a
strong time coherence between the individual behaviours. In robotics, synchro-
nisation can be exploited for the coordination of actions, both within a single-
or a multi-robot domain. In the latter case, synchronisation may be particu-
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larly useful to enhance the system efficiency and/or to reduce the interferences
among robots.

1.3.1 Variants of the synchronisation behaviour

Synchronisation in a multi-agent system can be of mainly two forms: “loose” and
“tight”. In the case of loose synchronisation, we observe a generic coordination
in time of the activities brought forth by different agents. In this case, single
individuals do not present a periodic behaviour, but as a group it is possible to
observe bursts of synchronised activities. Often in this case there are external
cues that influence synchrony, such as the daylight rhythm. On the other hand,
it is possible to observe tight synchronisation when the individual actions are
perfectly coherent. To ensure a tight synchronisation in a group, it is possible
to rely on either a centralised or a distributed approach. In the former, one
agent acts as a reference (e.g., a conductor for the orchestra or the music theme
for a ballet) and drives the behaviour of the other system components. In the
latter, a self-organising process is in place, and the system shows the ability
to synchronise without an externally-imposed rhythm. It is worth noting that
tight synchronisation does not necessitate individual periodic behaviour, neither
in the centralised nor in the self-organised case. For instance, synchronisation
has also been studied between coupled chaotic systems [58]. In the following, we
focus on self-organised synchronisation of periodic behaviours, which is the most
studied phenomenon as it is commonly observed in many different systems.

1.3.2 Self-organised synchronisation in biology

Although synchronisation has always been a well known phenomenon [71], its
study did not arouse much interest until the late 1960s, when Arthur Winfree
begun investigating the mechanisms underlying biological rhythms [82]. He ob-
served that many systems in biology present periodic oscillations, which can get
entrained when there is some coupling between the oscillators. A mathematical
description of this phenomenon was first introduced by Yoshiki Kuramoto [46],
who developed a very influential model that was afterwards refined and applied
to various domains [71].

Similar mechanisms are at the base of the synchronous signalling behaviour
observed in various animal species [14]. “Chorusing” is a term commonly used
to refer to the coordinated emission of acoustic communication signals by large
groups of animals. To cite a few, chorusing has been observed in frogs, crickets
and spiders. However, the probably-most-fascinating synchronous display is the
synchronous flashing of fireflies from South-East Asia. This phenomenon has
been thoroughly studied until a self-organising explanation was proposed to
account for the emergence of synchrony [11].

A rather simple model describes the behaviour of fireflies as the interactions
between pulse-coupled oscillators [49]. In Figure 1.3, the activity of two oscil-
lators is represented as a function of time. Each oscillator is of the integrate-
and-fire type, which well represents a biological oscillator such as the one of



1.3. ACTING TOGETHER: SYNCHRONISATION 11

Figure 1.3: The synchronisation between pulse-coupled oscillators. The oscil-
lator emit pulses each time its state variable reaches the threshold level (cor-
responding to 1 in the plot). When one oscillator emits a pulse, its state is
reset while the state of the other oscillator is advanced by a constant amount,
which corresponds to a phase shift, or to the oscillaltor firing if it overcomes the
threshold.

fireflies. The oscillator is characterised by a voltage-like variable that is inte-
grated over time until a threshold is reached. At this point, a pulse is fired
and the variable is reset to the base level (see Figure 1.3). Interactions between
oscillators take the form of constant phase shifts induced by incoming pulses,
which bring other oscillators close to the firing state, or make them directly
fire. These simple interactions are sufficient for synchronisation: in a group
of similarly pulse-coupled oscillators, constant adjustments of the phase made
by all the individuals lead to a global synchronisation of pulses (for a detailed
description of this model, see [49]).

1.3.3 Self-organised synchronisation in swarm robotics

The main purpose of synchronisation in swarm robotics is the coordination of
the activities in a group. This can be achieved in different ways, and mechanisms
inspired by the behaviour of pulse-coupled oscillators have been developed. In
[47], synchronisation is exploited to regulate the size of travelling robotic aggre-
gates. Robots can emit a short sound signal (a chirp), and enter a refractory
state for a short time after signalling. Then, robots enter an active state in
which they may signal at any time, on the basis of a constant probability per
time-step. Therefore, the chirping period is not constant and depends on the
chirping probability. In this state, robots also listen to external signals and
react by immediately emitting a chirp. This mechanism, similar to chorusing
in frogs and crickets, leads to synchronised emission of signals. Thanks to this
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simple synchronisation mechanism, the size of an aggregate can be somehow
estimated: given the probabilistic nature of chirping, a robot has a probability
of independently initiating signalling that depends on the number of individuals
in the group; estimating this probability by listening to own and others’ chirps
allows an approximate group size estimation. Synchronisation therefore ensures
a mechanism to keep coherence in the group, which is the precondition for group
size estimation.

In [83], synchronisation is instead necessary to reduce the interferences be-
tween robots, which periodically perform foraging and homing movements in
a cluttered environment. Without coordination, the physical interferences be-
tween robots going toward and away from the home location lead to a reduced
overall performance. Therefore, a synchronisation mechanism based on the fire-
fly behaviour was devised. Robots emit a signal in correspondence to the switch
from foraging to homing. This signal can be perceived by neighbouring robots
within a limited radius, and induces a reset of the internal rhythm that corre-
sponds to a behavioural shift to homing. Despite the limited range of communi-
cation among robots, a global synchronisation is quickly achieved, which leads
the group to reduce interferences and increase the system performance [83].

A different approach to the study of synchronisation is described in [76].
Here, artificial evolution is exploited to synthesise the behaviour of a group
of robots, with the objective of obtaining minimal communication strategies
for synchronisation. Robots were rewarded to present an individual periodic
movement and to signal in order to synchronise the individual oscillations. The
results obtained through artificial evolution are then analysed to understand the
mechanisms that can support synchronisation, showing that two types of strate-
gies were evolved: one is based on a modulation of the oscillation frequency, the
other relies on a phase reset. These two strategies are also observed in biological
oscillators: for instance, different species of fireflies present different synchroni-
sation mechanisms, based on delayed or advanced phase responses [11].

1.3.4 Other studies

While self-organised synchronisation is a well known phenomenon, its appli-
cation in collective and swarm robotics has not been largely exploited. The
coupled-oscillator synchronisation mechanism was applied to a cleaning task
to be performed by a swarm of micro robots [40]. Another interesting imple-
mentation of the basic model can be found in [20]. Here, synchronisation is
exploited to detect and correct faults in a swarm robotics system. It is assumed
that robots can synchronise a periodic flashing behaviour while moving in the
arena and accomplishing their task. If a robot incurs some fault, it will forcedly
stop synchronising. This fault can be detected and recovered by neighbouring
robots. Similar to the heartbeat in distributed computing, correct synchronisa-
tion corresponds to a well-functioning system, while the lack of synchronisation
corresponds to a faulty condition.

Finally, synchronisation behaviours may spontaneously emerge in an evolu-
tionary robotics setup, even if they are not explicitly rewarded. In [84], synchro-
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nisation of group activities evolved spontaneously as a result of the need to limit
the interferences among robots in a foraging task. In [70], robots were rewarded
to maximise the mean mutual information between their motor actions. Mutual
information is a statistical measure derived in Information Theory, and roughly
corresponds to the correlation between the output of two stochastic processes.
Evolution therefore produced synchronous movements among the robots, which
could actually maximise the mutual information while maintaining a varied be-
haviour.

1.4 Staying together: Coordinated motion

Another fundamental problem for a swarm is ensuring coherence in space. This
means that the individuals in the swarm must display coordinated movement
in order to maintain a consistent spatial structure. Coordinated motion is often
observed in groups of animals. Flocks of birds or schools of fish are fascinating
examples of self-organised behaviours producing a collective motion of the group.
Similar problems need to be tackled in robotics, for instance for moving in
formation or for distributedly deciding a common direction of motion.

1.4.1 Variants of the coordinated motion behaviour

The coordinated motion of a group of agents can be achieved in different ways.
Also in this case, we can distinguish mainly between a centralised and a dis-
tributed approach. In a centralised approach, one agent can be considered the
leader and the other agents follow (e.g., the mother duck with her ducklings). In
the distributed approach, instead, there is no single leader and some coordina-
tion mechanism must be found to let the group move in a common direction. Of
particular interest for swarm robotics are the coordinated motion models based
on self-organisation. Such models consider multi-agent systems that are nor-
mally homogeneous and characterised by a uniform distribution of information:
no agent is more informed than the others, and there exists no a priori prefer-
ence for any direction of motion (i.e., agents start being uniformly distributed in
space). However, through self-organisation and amplification of shared informa-
tion, the system can break the symmetry and converge to a common direction of
motion. A possible variant of the self-organised coordinated motion consists in
having a non-uniform distribution of information, which corresponds to having
some agents that are more informed than the others on a preferred direction of
motion. In this case, a few informed agents may influence the motion of the
entire group.

1.4.2 Coordinated motion in biology

Many animal species present coordinated motion behaviours, ranging from bac-
teria to fish and birds. Not all animal species employ the same mechanisms, but
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Figure 1.4: Self-organised coordinated motion in a group of agents. In the bot-
tom part, a group of agents is moving in roughly the same direction. According
to the model presented in [43], agents react to the closest neighbour within
their perception range, and follow three main rules: (a) agents move toward a
neighbour when it is too far; (b) agents move away from a neighbour when it is
too close; (c) agents rotate and align with a neighbour situated at intermediate
distances. The iterated application of these rules leads the group to move in a
same direction.

in general it is possible to recognise various types of interactions among indi-
viduals that have a bearing on the choice of the motion direction. Coordinated
motion has mainly been studied in various species of fish, in birds and in insect
swarms [3, 51]. The most influential model has been introduced by Huth and
Wissel to describe the behaviour of various observed species of fish [43]. In this
model, it is assumed that each fish is influenced solely by its nearest neighbour.
Also, the movement of each fish is based on the same behavioural model, which
includes also some inherent random fluctuation. According to the proposed be-
havioural model, each fish follows essentially three rules: (i) approach a faraway
individual, (ii) get away from individuals that are too close and (iii) align with
the neighbour direction (see Figure 1.4). When the nearest neighbour is within
the closest region, the fish reacts by moving away. When the nearest neighbour
is in the farthest region, the fish reacts by approaching. Otherwise, if the neigh-
bour is within the intermediate region, the fish reacts by aligning. These simple
rules are sufficient to produce collective group motion, and the final direction
emerges from the interactions among the individuals.

Starting from the above model, a number of variants have been proposed,
which take into account different parameters and different numbers of individ-
uals. In [25], a model including all individuals in the perceptual range was
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introduced, and a broad analysis of the parameters was performed, showing
how minor differences at the individual level correspond to large differences at
the group level. In [6], an experimental study on bird flocks in the field was
performed, obtaining position and velocity data for each bird in a real flock
through stereo-photography and 3D mapping. The obtained data were used to
verify the assumption about the number of individuals that each bird moni-
tors during flocking, showing that this number is constant (and corresponds to
about 7 individuals) notwithstanding the varying density of the flock. Finally,
in [24], a model is developed in which some of the group members have individ-
ual knowledge on a preferential direction. The model describes the outcome of
a consensus decision in the flock as a result of the interaction between informed
and uninformed individuals.

1.4.3 Coordinated motion in swarm robotics

The models introduced for characterising the self-organised behaviour of fish
schools or bird flocks have also inspired a number of interesting studies. The
most influential work is definitely the one of Craig Reynolds, who developed
virtual creatures called boids [62]. In this work, each creature executes three
simple behaviours: (i) collision avoidance, to avoid crashing with nearby flock-
mates; (ii) velocity matching, to move in the same way of nearby flockmates;
and (iii) flock centering, to stay close to nearby flockmates. Notice that the be-
havioural model corresponds to the models proposed in biological studies. The
merit of this work is being the first implementation of the rules studied for real
flocks in a virtual 3D world, showing a close correspondence of the behaviour
of boids with those of flocks, herds and schools. The research of Reynolds has
been taken as inspiration by many other studies on coordinated motion, mainly
in simulation. In [78], an implementation of the flocking behavioural model
has been proposed and tested on real robots. Robots use infrared proximity
sensors to recognise the presence of other robots and their distance, necessary
to perform collision avoidance and flock centering behaviours. Additionally, a
dedicated sensor to perceive the heading of neighbours was developed to support
the aligning behaviour. This system, called Virtual Heading System (VHS), is
based on a digital compass and wireless communication. Despite the fact that
digital compass cannot reliably work in an indoor environment, it is assumed
that neighbouring robots have similar perceptions. The perceived heading with
respect to the local north is communicated over the wireless channel, and it is
exploited for the alignment behaviour. This system allowed to test the flocking
behaviour of small robotic groups in a physical setting, and to study the dynam-
ics of flocking with up to 1000 simulated robots. This work was later extended in
[13], by having a subgroup of informed individuals which could steer the whole
flock, following the model presented in [24]. The dynamics of steered flocking
have been studied by varying the percentage of informed robots in simulation,
and tests with real robots have been performed as well.
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1.4.4 Other studies

As mentioned above, there exist numerous studies inspired by the school-
ing/flocking models. All these studies adopt some variants of the behavioural
rules described above, or analyse the group dynamics under some particular
perspective. A different approach to coordinated motion can be found in [16].
In this work, robots have to transport a heavy object and have imperfect knowl-
edge of the direction of motion. They can, however, negotiate the goal direction
by displaying their own preferred direction of motion and by adjusting it on
the basis of the direction displayed by others. On the whole, this mechanism
implements similar dynamics to the alignment behaviour of the classical flock-
ing model. Here, however, robots are connected together to the object to be
transported, adding a further constraint to the system that obliges a good ne-
gotiation to allow motion. A similar constraint characterises the coordinated
motion studies with physically assembled robots presented in [5, 75]. Here,
robots form a physical structure of varying shape, and can rotate their chassis
in order to match the direction of motion of the other robots. In this case, there
is no direct detection of the motion direction of neighbours. Instead, robots
can sense the pulling and pushing forces that are exerted by the other con-
nected robots through the physical connections. These pulling/pushing forces
are naturally averaged by the force sensor, which returns their resultant. Artifi-
cial evolution was exploited to synthesise an artificial neural network that could
transform the sensed forces to motor commands. The obtained results show an
impressive capability of self-organised coordination between the robots, as well
as scalability and generalisation to different size and shapes [5], and the ability
to cope with obstacles and to avoid falling outside the borders of the arena [75].

1.5 Searching together: Collective exploration

Exploring and searching the environment is an important behaviour for robot
swarms. In many tasks, the swarm must interact with the environment, some-
times only to monitor it, but sometimes also to process materials or other kinds
of resources. Usually, the swarm cannot completely perceive the environment,
and the environment may also change during the operation of the robots. Hence,
robots need to explore and search the environment to monitor for changes or in
order to detect new resources.

To cope with its partial perception of the environment, a swarm can move,
for instance using flocking, in order to explore new places (some locations may
be unavailable though). Hence, most of the environment can be perceived, but
not at the same time. As in many other artificial system, a tradeoff between
exploration and exploitation exists, and requires careful design choices.

1.5.1 Variants of the collective exploration behaviour

There is no perfect exploration and search strategy because the structure of
the environment in which the swarm is placed can take many different shapes.
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Strategies only perform more or less well as a function of the situation with
which they are faced [85]. For instance, the swarm could be in a maze, in a open
environment with few obstacles, or in an environmnent with many obstacles.

We identified a restricted number of environmental characteristics that play
an important role in the choice of the searching behaviour in swarm robotics.
These characteristics are commonly found in swarm robotics scenarios, and are
the presence of a central place, the size of the environment, the presence of
obstacles.

The central place is a specific location where robots must come back regu-
larly, for instance for maintenance or to deposit foraged items. A scenario that
involves a central place requires a swarm able to either remember or keep track
of that location.

If the environment is closed (finite area) and not too large, the swarm may
use random motion to explore, with fair chances to rapidly locate resources
(or even the central place). In an open environment, robots can get lost very
quickly. In this type of environment, it is necessary to use behaviours that allow
robots to stay together and maintain connectivity.

Obstacles are environmental elements that constrain the motion of the
swarm. If the configuration of the obstacles is known in advance, the swarm
can move in the environment following appropriate patterns. In most cases,
however, obstacles are unexpected or might be dynamic and may prevent the
swarm to explore parts of the environment.

1.5.2 Collective exploration in biology

In nature, animals are constantly looking for resources such as food, sexual
partners, or nesting sites. Group living animals may use several behaviours to
explore their environment and locate these resources.

For instance, fish can take advantage of the number of individuals in a shoal
to improve their capabilities to find food [59, 60, 41]. To do so, they move
and maintain large interdistances between individuals. In this way, fish increase
their perceptual coverage as well as their chances to find new resources.

Animals also heavily rely on random motion to explore their environment [22,
77, 52]. Usually the exploratory pattern is not fully random (that is, isotropic),
because animals use all possible environmental cues at hand to guide themselves.
Random motion can be biased towards a given direction, or it can be constrained
in a specific area, for instance around a previously memorised location [9]. Some
desert ants achieve high localization performance with odometry (counting their
footsteps) and relying on gravity and the polarization of natural light. They
may move randomly to look for resources but they are able to quickly return to
their nest, and also to return to an interesting location previously identified.

1.5.3 Collective exploration in swarm robotics

One of the most common exploration strategies used in robotics is the random
exploration. In a typical implementation, robots wander in the environment un-



18 CONTENTS

Figure 1.5: Gas expansion behaviour to monitor the surroundings of a central
place. (a) The swarm starts aggregated around a central place (represented by
a black spot). (b,c) Robots try to move as far as possible from their neighbours,
while maintaining some visual or radio connection. (d) As a result, the whole
swarm expands in the environment, like a gas, covering part of the environment.

Figure 1.6: Chaining behaviour in action with a central place represented by
a large black dot, bottom left. (a) Robots start aggregated around the central
place. (b) While maintaining visual or radio contact with neighbours, some
robots change role and become part of a chain (greyed out). (c) Other robots
move around the central place and encounter the early chain of robots. With
some probability, they also turn into new parts of the chain. (d) At the end of
the iterative process, robots are forming a long chain that spans through the
environment and maintains a physical link to the central place.

til they perceive a feature of interest [27, 65, 37]. By doing this, robots possibly
lose contact with each other and therefore their ability to work together, hence
this strategy is not suited for large or open environments. Due to the stochastic
nature of the strategy, its performance can only be evaluated statistically. On
average, the time to locate a feature is proportional to the squared distance
with robots [22].

Systematic exploration strategies are very different. Robots use some a pri-
ori knowledge about the structure of the environment in order to methodically
sweep it and find features. To ensure that robots do not repeatedly cover the
same places, they may need to memorize which places have already been ex-
plored. This is often implemented with localization techniques and mapping of
the environment [12]. The advantage of this technique is that an answer will be
found with certainty, and time of exploration has a lower and upper bound if the
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environment is not open. However, the memory requirements may be excessive,
and the strategy is not suited for open environments.

Between the two extreme strategies reported in the previous paragraph lie
a number of more specialised strategies that present advantages and drawbacks
depending on the structure of the environment and the distribution of the re-
sources.

Collective motion (already detailed in Section 1.4) allows swarms to maintain
their cohesion while moving through the environment. The flocking behaviour
can be employed in an open environment with a limited risk of losing contact
between robots. The swarm behaves like a sort of physical mesh that covers part
of the environment; to maximize the area covered during exploration robots can
increase as much as possible their interdistance during motion.

The gas expansion behaviour (see Figure 1.5) allows robots to quickly and
exhaustively explore the surroundings of a central place [55, 56, 42, 7]. While
one or several robots keep track of a central place, other robots try to move
as far as possible from their neighbours, while still maintaining direct line of
sight with at least one of them. The swarm behaves like a fluid or gas that
penetrates the asperities of the environment. The exploration is very effective
and any change or new resource within the perception range of the swarm is
immediately perceived. However, since robots are bound to the central place,
the area that they can explore is limited by the number of robots in the swarm.
If robots do not stick to a central place, the resulting behaviour shifts to a type
of flocking or moving formation.

With the chaining behaviour, swarms can form a chain with one end that
sticks to a central place and the other end that freely moves through the envi-
ronmnent (see Figure 1.6). In [81], a minimalistic behaviour produces a static
chain, but different types of chain motions can be imagined. In [50] for instance,
chains can build up, move, and disaggregate until a resource is found. Contrary
to the gas expansion behaviour, a chaining swarm may not immediately per-
ceive changes in the environment because it has to constantly sweep the space.
Chaining allows robots to cover a more important area than the gas expansion
behaviour, ideally a disc of radius proportional to the number of robots.

1.6 Deciding together: Collective decision mak-
ing

Decision making is a behaviour used by any artificial system that must produce
an adapted response when facing new or unexpected situations. Because the
best action depends on the situation encountered, a swarm cannot rely on a
pre-programmed and systematic reaction. Monolithic artificial systems make
decisions all the time, by gathering information and then evaluating the differ-
ent options at hand. However, when it comes to swarms, each group member
might have its own opinion about the correct decision. If all individuals per-
ceive the same information, and process it in the same way, then they might
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independently make the same decision. But in practice, the more common case
is that individuals perceive partial and noisy information about the situation.
Thus, if no coordination among group members occurs, a segregation based on
differing opinions might take place, thereby removing the advantages of being a
swarm. Therefore, the challenge is to have the whole group collaborate to make
a collective decision, and take action accordingly.

1.6.1 Variants of the collective decision making behaviour

There are mainly three mechanisms reported in the literature that allow swarms
to make collective decisions. The first and most simple mechanism is based on
opinion propagation. As soon as a group member has enough information about
a situation to make up its mind, it propagates its opinion through the whole
group.

The second mechanism is based on opinion averaging. All individuals con-
stantly share their opinion with their neighbors and also adjust their own opinion
in consequence. This iterative process leads to the emergence of a collective de-
cision. The adjustement of the opinion is typically achieved with an average
function, especially if opinions are about quantitative values such as a location,
a distance, or a weight for instance.

The third and last mechanism relies on amplification to produce a collective
decision. In a nutshell, all individiduals start with an opinion, and may decide
to change their opinion for another one. The switch to a new opinion happens
with a probability calculated on the basis of the frequency of this opinion in
the swarm. Practically, this means that if an opinion is more represented in the
group, it has also more chances to be adopted by an individual, which is why
the term amplification is used.

Each of the three aforementioned mechanisms has some advantages over the
others and may be preferred depending on the situation faced. The factors
that play an important role in collective decision processes include the speed
needed to make the choice, the robustness of communication, and the reliability
of individual information.

In terms of speed, opinion propagation allows fast collective decisions, in
constrast with the the two other mechanisms which require numerous interac-
tions among individuals. However, this speed generally comes at the cost of
robustness or accuracy [19]. If communication is not robust enough, messages
can be corrupted. The mechanism of opinion propagation is particularly sensi-
tive to such effects, and a wrong or random collective decision might be made
by a swarm in that case.

The averaging mechanism would produce a more robust decision because
wrong information from erroneous messages is diluted in the larger amount of
information present in the swarm [38]. However, opinion averaging works best
if all individuals have roughly identical knowledge. If a small proportion of
individuals have excellent knowledge to make the decision, while the remaining
individuals have poor information, opinion propagation may produce better
results than opinion averaging [23].
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Lastly, the amplification mechanism is the main choice for a gradually emerg-
ing collective decision if opinions cannot be merged with some averaging func-
tion. Instead of adjusting opinions, individuals simply adopt new opinions with
some probability. It is worth noting that this mechanism can produce good
decisions even if individuals have poor information.

1.6.2 Collective decision making in biology

The powerful possibilities of decision making in groups were already suggested
by Francis Galton back in 1905 [31]. In this paper, Galton reports the results of
a weight-judging competition in which competitors had to estimate the weight
of a fat ox. With slightly less than 800 independent estimates, Galton observed
that the average estimate was accurate to one percent of the real weight of the
ox. This early observation opened interesting perspectives about the accuracy of
collective estimations, but it was not describing a collective decision mechanism
since Galton himself had to gather the estimates and apply some calculation to
evaluate the estimate of the crowd.

More recent studies about group navigation have shown that groups of ani-
mals cohesively moving together towards a goal direction reach their objective
faster than independent individuals [67, 21]. The mechanism of collective navi-
gation not only allows the individuals to move and stay together, but it also acts
as a distributed averaging function that locally fuses the opinions of individu-
als about the direction of motion, allowing them to improve their navigation
performance.

In the last decades, the amplification mechanism has been identified as a
source of collective decision in a broad range of animal species such as ants [26,
8], spiders [64], cockroaches [1], monkeys [57], and sheeps [48].

Ants that choose one route to a resource probably constitute the most well
known example of the amplification mechanism. In [8], an ant colony is offered
two paths to two identical resource sites. Initially the two resources are exploited
equally, but after a short time ants focus on a single resource. This collective
choice happens because ants that have found the resource come back to the nest,
marking the ground with a pheromone trail. The next ants that try to reach the
resource are sensitive to this odor and have higher chances to follow the path
with higher pheromone concentration. As a result of this amplified response, a
collective decision rapidly emerges. In addition, it was shown in [36] that when
ants are presented two paths of different lengths to the same resource, the same
pheromone-based mechanism allows them to choose the shortest path. This can
be explained by the fact that ants using the shortest path need less time to make
round trips, making the pheromone concentration on this path grow faster.

Quorum sensing is a special case of the amplification mechanism which has
been notably used to explain nest site selection in ants, bees, and fish [73, 80,
61]. The most basic example of quorum sensing uses a threshold to dictate
if individuals should change their opinion. If an individual perceives enough
neighbours (above the threshold) that already share the opposite opinion, then
it will in turn adopt this opinion. It has been shown that this threshold makes
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Figure 1.7: A swarm of robots is presented with two resource sites in its en-
vironment and must collectively choose one. (a) Initially, robots are randomly
scattered. (b) Using a random walk, they move until a resource site is found.
On average, the swarm is split in the two sites. (c) The more neighbours they
perceive, the longer the robots stay. A competition between the two sites takes
place and any random event may change the situation. Here a robot just left
the top right site, further reducing the chances that other robots stay there. (d)
The swarm has made a choice in favour of the bottom left site. The choice is
stable, although some robots may frequently leave the site for exploration.

quorum sensing more robust to the propagation of erroneous information during
the decision process. In addition, the accuracy of collective decisions made
with quorum sensing may improve with group size, and cognitive capabilities of
groups may outperform the ones of single individuals [74, 17].

1.6.3 Collective decision making in swarm robotics

In swarm robotics, opinion averaging has been used to improve the localization
capabilities of robots. In [37], a swarm of robots carries out a foraging task
between a central place and a resource site. The robots have to navigate back
and forth between the two places, and use odometry to estimate their location.
As odometry provides noisy estimates, robots using solely this technique may
quickly get lost. Here, robots can share and merge their localization opinions
when they meet, by means of local infrared communication. By doing so, robots
manage better localization and improve their performance in the foraging task.
Moreover, robots associate a confidence level to their estimates, which is used to
decide how information is merged. If a robot advertises an opinion with a very
high confidence, then the mechanism produces opinion propagation. Hence the
two mechanisms of averaging and propagation are blended in a single behaviour,
and the balance between them is tuned by the user with a control parameter.

The aggregation behaviour previously mentioned in Section 1.2.3 can be
exploited to trigger collective decision making in situations where there are
several environmental heterogeneities. In [32], the robots are presented two
shelters and they choose one of them as a resting site by aggregating there.
The behaviour of the robots closely follows the one observed in cockroaches
(see Figure 1.7). In [39], both robots and cockroaches are introduced in an
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arena with two shelters, demonstrating the influence of the two groups on each
other when making the collective decision. The collective decision is the result
of an amplification mechanism, implemented via the probability for a robot to
leave an aggregate. This probability diminishes with the number of perceived
neighbours, allowing larger aggregates to attract more robots.

1.6.4 Other studies

The opinion averaging mechanism has been deeply investigated with a general
mathematical approach in [54, 53]. These studies demonstrate convergence of
the mechanism, and emphasize the importance of the topology of the commu-
nication network through which interactions take place.

Another amplification mechanism inspired from the behaviour of honeybees
has been implemented in [66]. With this mechanism, it was shown that robots
were able to make a collective decision and reliably choose between two sites
the one offering the best illumination conditions.

The amplification mechanism based on pheromone trails and used by ants
has also inspired several swarm robotics studies. In [72, 34], the pheromone
is replaced by light projected by a beamer. This implementation is limited
to laboratory studies, but it allowed demonstrating path selection with robot
swarms. In [15], the process is abstracted inside a network of robots that are
deployed in the environment. Virtual ants hop from robots to robots and deposit
pheromone inside them. Eventually, the shortest path to a resource is marked
out by robots with high and sustained levels of pheromone.

1.7 Conclusions

In this chapter, we have presented a broad overview of the common problems to
be faced in a swarm robotics context, and we pointed to possible approaches to
obtain solutions based on a self-organising process. We have discussed aggrega-
tion, synchronisation, coordinated motion, collective exploration and decision-
making, and we argued that many application scenarios could be solved by a
mix of the above solutions. So, are we done with swarm robotics research?
Definitely not.

First of all, the fact that possible solutions exist does not mean that they are
the most suitable for any possible application scenario. Hardware constraints,
miniaturisation, environmental contingencies and performance issues may re-
quire the design of different solutions, which may strongly depart from the
examples given above. Still, the approaches we presented constitute a logical
starting point, as well as a valid benchmark against which novel approaches can
be compared.

Another important research direction consists in characterising the self-
organising behaviours we presented in terms of abstract properties, such as
time of convergence toward a stable state, sensitivity to parameter changes, ro-
bustness to failures and so forth. From this perspective, the main problem is
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ensuring a certain functionality of the system with respect to the needs of the
application, and predicting the system features before actual development and
testing. In many cases, a precise characterisation of the system is not possi-
ble, and only a statistical description can be achieved. Still, such an enterprise
would bring swarm robotics closer to an engineering practice, eventually allow-
ing to guarantee a certain performance of the developed system, as well as other
properties that engineering commonly deals with.

The examples we presented all refer to homogeneous systems, in which all in-
dividuals are physically identical and follow exactly the same rules. This is how-
ever a strong simplification, which follows the tradition of biological modelling of
self-organising behaviours. However, instead of being a limitation, heterogene-
ity is potentially a richness to be exploited in a swarm robotics system, which
can lead to more complex group behaviours. For instance, different individual
reactions to features in the environment can be at the basis of optimal decision
making at the group level [63]. Otherwise, heterogeneity between groups of in-
dividuals can be exploited for performing tasks that require specialised abilities,
but maintaining an overall redundancy of the system that ensures robustness
and scalability [29].

In conclusion, swarm robotics research has still many challenges to address,
that range from the need for more theoretical understanding of the relation be-
tween individual behaviour and group dynamics, to the autonomy and adapta-
tion to varied real world conditions in order to face complex application scenarios
(e.g., due to harsh environmental conditions such as planetary or underwater
exploration, or to strong miniaturisation down to the micro scale). Whatever
is the theoretical or practical driver, we believe that the studies we have pre-
sented in this chapter constitute fundamental reference points that teach us how
self-organisation can be obtained in a swarm robotics system.
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