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Abstract. Precision agriculture represents a very promising domain for
swarm robotics, as it deals with expansive fields and tasks that can be
parallelised and executed with a collaborative approach. Weed monitor-
ing and mapping is one such problem, and solutions have been proposed
that exploit swarms of unmanned aerial vehicles (UAVs). With this pa-
per, we move one step forward towards the deployment of UAV swarms
in the field. We present the implementation of a collective behaviour for
weed monitoring and mapping, which takes into account all the processes
to be run onboard, including machine vision and collision avoidance. We
present simulation results to evaluate the efficiency of the proposed sys-
tem once that such processes are considered, and we also run hardware-
in-the-loop simulations which provide a precise profiling of all the system
components, a necessary step before final deployment in the field.

1 Introduction

Swarm robotics can have a large impact in many application domains, especially
when the tasks to be accomplished are distributed widely in space, and when
there is room for collaboration among robots [5]. In such conditions, not only
it is possible to profit of the parallel execution of tasks by multiple robots, but
the execution of a single task is made more efficient thanks to collaboration,
opening to the exploitation of solutions designed for multi-robot task allocation
problems [7,11]. An application domain presenting expansive fields and needs
for collaboration is certainly precision agriculture, whereby robotics technolo-
gies promise a remarkable impact [9]. Current practice is however far from ex-
ploiting the full potential of autonomous robots and multi-robot collaboration.
Off-the-shelf remote sensing technologies with unmanned aerial vehicles (UAVs),
for instance, rarely go beyond passive data collection with predefined mission
plans [13,8]. Therefore, even in field mapping applications, much improvement
is expected by the introduction of adaptive mission planning and collaboration
among multiple UAVs [14,2].

Previous work proposed swarm robotics approaches for UAVs engaging in a
weed monitoring and mapping problem [2,1]. In this problem, weeds must be
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recognised from crops in order to create a precise weed-density map to be ex-
ploited for weed control operations (e.g., for variable-rate herbicide applications).
Swarm robotics solutions are useful to parallelise the monitoring and mapping
operations, and to have robust controllers scalable to different field sizes [2].
Additionally, the weed distribution across an expansive field is often heteroge-
neous, with weed patches infesting certain areas while other areas remain devoid
of weed. In such conditions, it is useful to adaptively monitor only those ar-
eas where weeds are present—and to collaborate for that purpose—resorting to
non-uniform coverage and mapping strategies [15,1]. These studies just provide
a proof of concept in abstract simulations, and several relevant features that
pertain to the real-world implementation have been overlooked. For instance,
collision avoidance among UAVs was not taken into account, and the onboard
weed detection through machine vision was streamlined by a simple mathemat-
ical model of the weed detection error [2].

In this paper, we move toward real-world testing with the following contri-
butions. (i) We provide the full implementation of a weed coverage and mapping
system for a UAV swarm, with a design tailored to the Avular Curiosity plat-
form [3]. For experimental purposes, we set up an experimental indoor arena
whit a green carpet and pink golf balls to represent weeds, following the rules of
the 2017 Field Robot Event [6], a renowned competition for autonomous farming
robots. This choice drastically simplifies the vision routines, but ensures that all
the components of the control loop are taken into account. (ii) We provide an
improved implementation of the stochastic coverage and mapping presented in
[2], including collision avoidance among UAVs and onboard vision. We test the
performance of the deployed algorithm in simulation for a wide range of param-
eterisations, identifying the most suitable parameters sets for efficient coverage
and mapping. (iii) We integrate the hardware platform into the simulation envi-
ronment and we perform hardware-in-the-loop (HIL) simulations to profile the
different components of the onboard system. We propose HIL simulations as a
convenient way of testing swarm robotics controllers before actual deployment,
especially when physical interactions are not needed. (iv) We provide proof-of
concept videos of the real flying system.

The paper is structured as follows. Section 2 describes the design of the differ-
ent components implementing the stochastic monitoring and mapping strategy.
Section 3 discusses the results of simulations for field coverage, weed mapping
and HIL simulations. Section 4 concludes the paper discussing the results ob-
tained and the future steps necessary for field deployment of UAV swarms.

2 Experimental setup

Weed monitoring and mapping requires UAVs to fully cover a field, detect the
presence of weeds and map their exact position. We considered a mockup version
of the real problem by simplifying the vision requirements, so that we can focus
on the development and testing of the swarm-level strategy. In this mockup
version, weeds are represented by pink golf balls placed on a green carpet, making
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their detection a relatively simple task. Here, our main objective is to develop and
test a simple and reliable coverage and mapping algorithm in realistic conditions,
and to flexibly switch between simulation and execution on the UAV platform,
also mixing the two with HIL simulations.

2.1 Hardware

The Avular Curiosity platform is a small square quad-rotor of about 40 cm side
and 1 kg weight (see Figure 1) [3]. The platform provides dedicated hardware
for low-level flight control and high-level mission execution. The low-level con-
trol unit consists of a PX4 micro-controller that acts as a bridge between the
high level abstraction and another PX4 that implements the autopilot. The low-
level unit integrates a variety of sensors for motion control, such as a real-time
kinematic global navigation satellite system unit (RTK-GNSS), a dual 9-DOF
IMU, a barometer and a laser range-finder for altitude control, and the Ultra-
Wide Band (UWB) system for indoor self-localisation. These sensors support
precise absolute localisation both indoor and outdoor, hence allowing waypoint
navigation and simple trajectory generation.

The high-level control unit consists of a Raspberry Pi3 (RPi), a small and
affordable programmable device characterised by low energy consumption. The
role of the RPi is to support the overall mission execution strategy (see Sec-
tion 2.2), which includes both onboard vision and communication with other
UAVs within the swarm. The latter is achieved thanks to the Digi ZigBee, a
specific module coming from the Xbee family of communication devices.

2.2 Software

The proposed implementation of the high-level mission execution strategy ex-
ploits the Robot Operating System (ROS) structure, in particular ROS Kinetic
running on the RPi platform, and is illustrated in Figure 1. The overall frame-
work improves over the stochastic coverage and mapping strategies presented
in [2] by refining the reinforced random walk model including collision avoid-
ance (see also Section 2.3), by removing inefficient computations and by adding
onboard vision (Section 2.4).

More in detail, the proposed implementation offers three main ROS pack-
ages: (i) Core, (ii) Perception and (iii) Communication, each one responsible
of a specific task. The Core package is responsible for defining the navigation of
the UAV between different areas of the field, assuming knowledge of the abso-
lute position of the drone, either from GNSS outdoor or from the UWB indoor.
The Perception package is responsible for image acquisition and processing. It
presents two different nodes, one for communication with an external camera
(i.e., the Raspicam connected to the RPi) to be used for real field tests, and
another one used in the HIL simulations that loads real images from the local
dataset and processes them on-line. The last package is Communication, which
enables swarm operations and allows drones to perform cooperative field map-
ping as well as communication between high-level and low-level control units.
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Fig. 1. Proposed implementation of the mission execution strategy for the Avular
Curiosity platform [3], which is shown in the top right side. The development is made
on the Raspberry Pi3 platform using ROS running over a custom version of Ubuntu
Mate 16.04. There are three main ROS packages, namely (i) Core (ii) Perception, and
(iii) Communication. Each package allows to run any of different nodes it embeds.

The node responsible for the latter is the Serial node, which enables direct
communication with the low level autopilot through the RPi serial port. Com-
munication with other drones is made possible by the Radio Frequency node
that forwards and processes information to and from the ZigBee external mod-
ule, implementing also the selected information-aware broadcasting protocol [2].
Information sharing is made possible by the Micro Air Vehicle Link (MAVLink)
communication protocol, responsible of encoding and decoding both default and
custom messages.

2.3 Stochastic coverage and mapping

The basic navigation strategy implemented by the Core package derives from
previous work [2], and improves it in several ways. As in previous work, we con-
sider a field divided in square cells of 1 m side. The UAVs have access to their
global position (either through GNSS or UWB) and can communicate reliably
with each other.3 We assume a maximum density for the point of interests in
each cell. For instance, in the indoor tests here presented we assume that each
cell contains up to 12 pink golf balls. To accomplish the coverage task, each cell

3We ignore here communication limitations, which have been suitably accounted
for through information re-broadcasting protocols [2,1].
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needs to be visited at least once and by at least one UAV while, to accomplish
the mapping task the number of balls within the cell should be reliably detected.
Similarly to [2], the Knowledge Base node contains the local knowledge of the
current coverage and mapping activities, which also integrates information re-
ceived from other UAVs through the Communication nodes. This knowledge is
completely distributed, meaning that each UAV in the swarm posses its own rep-
resentation of the world. The local knowledge is constantly updated by means of
information observed locally or received from other UAVs, and determines the
navigation strategy implemented in the Random Walk node.

More in details, at every decision step, a UAV selects the next cell to visit
randomly choosing one cell from a valid set V. A cell is considered valid if it
has not been covered or mapped before by any other UAV, and if it is not
occupied/targeted by other UAVs within the swarm. Cells are added to V in
order of increasing distance from the UAV (see Figure 2a), until a maximum
number V is reached (in this study, V = 1). At this point, the set V is completed
including all valid cells within the maximum distance reached. In this way, the
distance to be covered by a UAV to reach the next cell is always minimised.
Here, we simplify the construction of V by looking at the whole plane, while in
[2] priority was given to the semi-plane in the forward direction of motion. In
this way, we save precious computational time for implementing the strategy on
the RPi.

We consider here a reinforced random walk [17], in which a directional bias is
given by three components, as shown in Figure 2a: (i) the individual momentum
mh, a unit vector in the direction of motion of the UAV h resulting in a correlated
random walk; (ii) the repulsion vector rh from all other UAVs in the swarm; (iii)
the attraction vector ah towards cells previously marked as attractive by other
UAVs with virtual beacons b ∈ B. Attraction and repulsion vectors are computed
as follows:

rh =
∑
u6=h

S(xh − xu, σa), ah =
∑
b∈B

S(xb − xh, σb), S(v, σ) = 2ei∠ve−
|v|
2σ2 , (1)

where xi represents the position of agent/beacon i, and S(v, σ) returns a vector
in the direction of v with a Gaussian length with spread σ. With respect to [2],
we simplify the way in which beacons are placed and removed. Here, an agent
places a beacon on a cell if something has been detected, and only if no other
beacon is present. Beacons are removed from cells that are reliably mapped.

The selection of the next cell to visit is performed randomly using the vector
vh = mh + rh + ah as a bias. Each cell c ∈ V is assigned a probability Pc =
uc/

∑
i∈V ui of being selected, where the utility uc is computed according to the

angular difference θc = ∠(xc − vh) as follows:

uc = C(θc, 1− e
|vh|
2 ), C(θ, p) =

1

2π

1− p2

1 + p2 − 2p cos θ
(2)

where C(·) is the wrapped Cauchy density function with persistence p. Dif-
ferently from [2], we use the length of the bias vector vh—filtered by a smooth
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(a) (b) (c)

Fig. 2. (a) The RRW gives priority to neighbouring cells—numbered for increasing dis-
tance from the UAV placed in the center—and to cells in the direction of the resultant
vector from the individual momentum m, the repulsion from other drones r and the
attraction to beacons a. (b-c) Weeds are represented by pink golf balls over a green
carpet. Circles around the balls represent the output of the vision module. Artificial
disturbances are included in the left image to obtain realistic output from the visual
processing. Disturbances represent illumination variance, shadows and motion blur.

exponential ceiling function—to modulate the persistence of the random motion,
so that a small module results in lower directional bias in the cell choice.

One of the biggest limitations of [2] is the absence of collision avoidance,
which is required for real world deployment. Here, the navigation strategy in-
cludes the Collision Avoidance ROS node, which is responsible to generate
sage and accurate trajectories. To this end, information about the position of
other UAVs (as broadcasted through the Communication node) is made avail-
able by the Knowledge Base node. Based on such information, we implement
the Optimal Reciprocal Collision Avoidance (ORCA) method [18,4]. ORCA is
based on the knowledge of the position and velocities of the agents that may
interfere with the planned trajectory. To avoid collisions, ORCA assigns part of
the responsibility of implementing a correct manoeuvre to all agents involved.
The method calculates all possible collisions within a time interval τ (in this
work, τ = 1 s). To this end, an agent is approximated by a disk with a safety
radius ro, which indicates the area around the agent that should not be violated.
Then, all possible collision-free velocities are computed and the one that remains
closer to the original velocity is selected. In this work, we integrate ORCA with
the reinforced random walk strategy by letting the former change the trajectory
to reach the desired destination. In cluttered conditions, collision avoidance may
be very time-consuming. To avoid deadlocks, we let UAVs abandon their current
target in favor of a new one if the flying time exceeds twice the expected value.

2.4 Onboard vision module

The goal of the Vision package is to implement the routines necessary to de-
tect and count pink golf balls over a green carpet. Field experiments will add
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ROS nodes for the real weed recognition systems based on previous and ongo-
ing studies [12,10]. To detect pink golf balls, a simple blob-detection algorithm
has been implemented using OpenCV. We used a trivial procedure consisting of
circularity filtering and converted the image color space from BGR to HSV in
order to make the extraction of the pink golf balls more accurate. To tune and
validate the blob detection algorithm, as well as for HIL simulation purposes, we
generated a large dataset by placing pink golf balls randomly over a synthetic
grass carpet within a 1 m2 area (see Figure 2b). We varied the number of golf
balls from 0 to 12, and for each size we collected 20 images. Finally, the dataset
has been extended by rotating and flipping each image generating further unique
configurations of the ball positions.

After tuning, the developed blob detection algorithm perfectly detects and
counts the balls within the dataset. However, images taken from the UAVs while
flying will never be as sharp and bright as the ones in the collected dataset.
To evaluate the effectiveness of the devised mapping strategy under realistic
working conditions, we artificially add disturbances to the images, to represent
(i) changes in global illumination, (ii) shadows locally affecting portions of the
image, and (iii) motion blur due to sudden rapid movements of the UAV. We
simulate these disturbances by reducing the contrast of the image globally as
well as within randomly generated blobs in the image, and then we apply a
convolution with an averaging Gaussian kernel with a random direction (see
Figure 2c). To evaluate the performance of the Vision, we traversed all of the
dataset 100 times and for each image we added artificial disturbances. We tuned
the artificial disturbances to obtain an overall 22% error (mean: 0.2175 standard
deviation: 0.018) so to ensure realistic and competitive tests. Indeed, given such
error, it is not possible for the UAVs to know whether a cell is reliably mapped
or not. In this paper we approximated this decision by marking a cell as reliably
mapped within the Knowledge Base when the number of detected balls does
not differ from a previous passage. In this way, at least two passages over the
same cell are necessary to mark it as reliably mapped. The mapped state is then
broadcasted to all other UAVs in the swarm via the Communication package.

3 Results

As mentioned above, the software we developed can be seamlessly integrated with
simulations or executed by the UAV platform [3]. We present here simulation
results to study both simple coverage by UAV swarms (Section 3.1) and weed
mapping (Section 3.2). We also present results of HIL simulations, whereby the
UAV platform is integrated within the simulator and used to execute—without
flying—the coverage and mapping algorithm (see Section 3.3).

3.1 Field coverage

The simple coverage problem requires that UAVs inspect every portion of the
field by visiting (and inspecting) each cell at least once. Ideally, every cell
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Fig. 3. Coverage time (absolute tc and relative t∗c) for varying swarm size N . Each
panel shows the average results over 150 runs varying the Gaussian spread σa used to
compute the repulsion vector r and the safety radius ro that parametrises the ORCA
algorithm. Errorbars represent the standard error. The number of collisions detected
in each conditions is printed in the bottom of each panel, and color-coded according
to the corresponding value of ro.

is visited only once by one UAV and the coverage time tc is minimised. In
this study, we consider a field of M = 50 × 50 = 2500 cells, and swarm size
N ∈ {25, 50, 75, 100}. Following the approach taken in [2], we consider the abso-
lute coverage time tc as well as the time t∗c relative to a lower bound computed as
t1M/N , where t1 is the time taken by a UAV to move between two adjacent cells.
Focusing on coverage only, we disable the Vision node, and cells are marked as
covered as soon as visited by a UAV, so that they are not visited a second time.
Also, virtual beacons are not used for coverage. We instead focus on the inter-
action between the random walk, repulsion from other UAVs (as parametrised
by the Gaussian spread σa ∈ [0, 64]), and collision avoidance (as parametrised
by the ORCA radius ro = {0, 0.3, 0.6}, considering collision avoidance disabled
when ro = 0). We also count the number of potential collision events detected
anytime two UAVs get closer than 0.3 m. Note that these events do not affect
the UAV motion in simulation (i.e., UAVs continue their mission even after a
potential collision has been detected). In this way, we can evaluate the effects of
collision avoidance on the overall performance.

The results of simulations are presented in Figure 3. Coverage time tends to
decrease with larger repulsion among UAVs, especially for σa > 8 until it hits
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a lower bound and starts increasing again (e.g. σa > 64). This means that a
sufficiently high repulsion is necessary to ensure that UAVs remain separated
from each other to cover different areas. As the size of the swarm increases,
the coverage time decreases in absolute terms, but not when compared with the
lower bound, corresponding to a sub-linear increase of efficiency (i.e. a linear
increment of agents does not correspond to a linear increase of the efficiency).
Moreover, as the size of the swarm increases we observe that high repulsion is
detrimental. Indeed, high repulsion values associated to swarms of a considerable
size (i.e. 75 and 100) do not aid the overall performance, pushing UAVs to the
boundaries of the environment and causing inner cells to have low probability
of being visited. Still, the performance obtained by the reinforced random walk
strategy is remarkable, if we consider that the lower bound represents an ideal
performance that is hardly achievable in practice.

In general collision avoidance results in slower coverage as UAVs take time
to avoid each other. However, when ro = 0.3, the difference with the ideal no-
collision case is negligible. A larger safety radius (ro = 0.6) has a larger impact
because resolving collisions is generally more complex, especially when σa > 16.
In these conditions, the strong repulsion makes UAVs move in a more directed
way, hence interfering more with each other. Despite the slightly longer coverage
time, ORCA successfully manages to avoid collisions among UAVs. The number
of detected collision events is very high when ORCA is disabled, but practically
all collisions are avoided when avoidance is enforced.

3.2 Weed mapping

Once studied the effect of collision avoidance on the field coverage efficiency, we
move to study the ability to precisely map the field for the presence of weeds,
here represented by pink golf balls. We consider again fields of M = 50 × 50
cells containing 5 patches of weeds, each represented by a square of 6 × 6 cells
where the distribution of balls follows a 2D Gaussian, having (higher density
in the center and lower density in the periphery. Each weed-infested cell has
an associated image from the dataset, over which artificial disturbances can be
added at runtime, as described in Section 2.4. We study both the conditions
with and without such disturbances, to evaluate their effect on the mapping
strategy. As mentioned in Section 2.4, a cell is marked as reliably mapped when
the number of balls detected is equal to the number previously stored in the
Knowledge Base. Hence, when no disturbance is added, two visits per cell are
required even when no weed is present. More visits may be required in case of
perception errors. UAVs perform a reinforced random walk under the influence
of both repulsion from other agents (σa ∈ {0, 2, 4, 8, 16, 32}) and attraction to
virtual beacons (σb ∈ {0, 2, 4, 8, 16, 32}). We fix in this case the value of the
ORCA radius ro = 0.3, which provides safe conditions for collision avoidance
with negligible performance cost, as discussed in Section 3.1. To evaluate the
performance of the system, we consider here the coverage time tc and the map-
ping time tm. The latter corresponds to the time in which all weed-infested cells
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Fig. 4. Comparison of the coverage and mapping time for N = 50 robots. Each cell in
the heatmap represents the average of 150 runs.

are marked as reliably mapped. Additionally, we look at the mapping accuracy
by recording the average detection error with respect to ground truth.

Figure 4 shows the average coverage and mapping time for N = 50 UAVs.4

When no error in perception is considered (top-left and top-right panels), cov-
erage time decreases with increasing repulsion among the UAVs—similarly to
what observed before—but increases with higher attraction towards beacons.
Indeed, a high value of σb makes all UAVs move towards the weed patches first,
leaving other areas of the field unattended and resulting in a overall higher cov-
erage time, as the field gets fully covered only when all cells receive at least
one visit. Note that coverage times are slightly higher in this case than what is
shown in Figure 3, because the mapping task requires multiple passages over the
same cell, hence slowing down coverage. On the other hand, the mapping time
tm decreases with high attraction towards beacons, as more UAVs are dedicated
to mapping only those areas that require attention. Conversely, mapping is less
efficient when repulsion among UAVs is too strong, to the point that no substan-
tial difference with coverage is visible when σa = 64. The smallest values of tm
occur for medium values of attraction and large values of repulsion (σa = 8 and
σb = 32 in Figure 4). These values slightly vary with the group size N , as shown

4Data for different group sizes are available in the appendix at the end of the
manuscript.
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in the appendix, but generally indicate that there can be positive interactions
between repulsion among UAVs and attraction towards beacons.

When some error in perception is introduced with artificial disturbances on
the images (bottom panels in Figure 4), the coverage and mapping time in
general increases due to the need to frequently revisit those cells where some
perception error occurred. Such negative effects are negligible for what concerns
the coverage time, because the entire field must be covered in any case. The
mapping time gets instead much worse, due to the need to visit multiple times
just those cells where weed is present. For σa = 64, mapping terminates even
after coverage, indicating that repulsion among agents is too strong to make
UAVs focus on the weed infested areas en masse.

The accuracy of mapping in presence of perception error increases thanks
to the multiple visits performed to weed-infested areas, which allow to increase
the probability of detecting the correct number of balls, as UAVs visiting a cell
at different times get a different perception error. The detection error decreases
below 5% (mean: 0.046, standard deviation: 0.009), indicating that collaboration
among UAVs is effective to increase mapping accuracy.

3.3 Hardware-in-the-loop (HIL) simulations

Simulations have been performed also to profile the developed algorithm when
run on the RPi of the UAV. One drone has been connected through the serial
port to a desktop, and interacted with the simulator through UDP messages.
The UAV process onboard images from the dataset corresponding to the simu-
lated cells, and decides the next cell to visit. The new waypoint is not sent to
the autopilot but rather it is communicated to the simulator that implements
the UAV motion. Similarly, ORCA is executed onboard and new waypoints are
generated and sent to the simulator. We have performed several profiling tests to
understand how much time is required for each operation. Overall, the module
that takes longer time is Perception, which takes approximately 0.244 s in av-
erage, while Core takes about 0.107 s. Considering that Perception is executed
only once per cell while the UAV is hovering, these values are compatible with
field deployment, confirming that the proposed strategy can be reliably tested
with real UAVs.

4 Conclusions

With this study, we have moved a fundamental step in the direction of field
deployment for UAV swarms. We have described an efficient implementation
on a real platform of a scalable coverage and mapping strategy based on re-
inforced random walks. The navigation strategy simplifies and improves over
previous work [2], including collision avoidance among UAVs and also enhanc-
ing the random walk. The latter has been modified to take into account both the
direction and the intensity of the bias vector resulting from attraction to bea-
cons and repulsion from other agents. In this way, all available information are
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exploited for the benefit of both field coverage and weed mapping. In computing
the results, we put particular care in the realism of the simulation, including
artificial vision. Additionally, we implemented the proposed strategy on the real
UAV hardware and tested it into hardware-in-the-loop simulations, verifying the
suitability of the implementation prior to deployment with flying UAVs. Proof-
of-concept videos of the real flying system is available online [16]. Our current
effort is in collecting evidence of the suitability of the proposed strategy with
more field tests, to be performed both indoor, using the mockup experimental
scenario described in this paper, and outdoor, with tests performed on agri-
cultural fields and real onboard classification of corps and weeds. The latter
proves particularly challenging, due to the complexity of the vision routines that
are prone to non-negligible errors. However, this paper suggests that swarms
of UAVs can improve the detection accuracy beyond the individual limitation,
and field tests will be dedicated to support and strengthen this concept. We are
already moving the next steps toward future work, specifically by introducing a
Bayesian estimator to reliably determine if a cell can be considered mapped or
not. This is then used by the RRW to improve the exploration strategy based
on the information that a specific region is expected to provide.
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5 Appendix - Additional Experiments

In this section we present additional data coming from some more experiments
performed within this study. In particular, we present results for coverage and
mapping time obtained by varying the number of robots involved in the simula-
tion. As expected, both the mapping and the coverage problem benefit from the
increased density of agents. We also observe that such increase in performance
does not scale linearly due to non-beneficial interactions between the agents (i.e.
issues related to overcrowding). Last, we observe a “right shift” in the minima
of the mapping time tm when the number of agents in the swarm increases. This
is expected, as a larger number of agents increases the repulsion force acting on
the single UAV, thus requiring higher attraction forces from the beacons to be
effective.

0 4 8 16 32 64

64

32

16

8

4

0

n
o
 p

e
rc

e
p
ti

o
n
 e

rr
o
r 

 σ
B

1870 1868 1822 1773 1727 1563

1803 1801 1794 1727 1578 1507

1804 1771 1772 1640 1515 1477

1789 1789 1765 1654 1525 1476

1804 1777 1757 1640 1508 1459

1772 1767 1721 1625 1501 1457

Coverage

0 4 8 16 32 64

64

32

16

8

4

0

1448 1452 1369 1368 1292 1431

1307 1317 1264 1293 1415 1446

1387 1355 1318 1393 1479 1486

1537 1504 1513 1502 1491 1463

1630 1584 1622 1559 1478 1431

1631 1620 1591 1533 1467 1425

Mapping

0 4 8 16 32 64

σA

64

32

16

8

4

0

p
e
rc

e
p
ti

o
n
 e

rr
o
r 

 σ
B

1893 1877 1846 1822 1771 1585

1837 1827 1813 1752 1601 1500

1809 1792 1780 1682 1551 1498

1807 1780 1758 1655 1524 1478

1814 1799 1773 1644 1508 1477

1806 1791 1756 1636 1512 1478

0 4 8 16 32 64

σA

64

32

16

8

4

0

1567 1552 1505 1472 1455 1552

1517 1456 1478 1457 1517 1555

1515 1523 1493 1529 1560 1577

1604 1600 1605 1574 1569 1571

1707 1684 1658 1607 1581 1575

1702 1693 1664 1635 1563 1565

1200

1280

1360

1440

1520

1600

1680

1760

1840

t c
, 
t m

Fig. 5. Comparison of the coverage and mapping time for N=50 robots. Each cell in
the heatmap represents the average of 150 runs.
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Fig. 6. Comparison of the coverage and mapping time for N=75 robots. Each cell in
the heatmap represents the average of 150 runs.
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Fig. 7. Comparison of the coverage and mapping time for N=100 robots. Each cell in
the heatmap represents the average of 150 runs.
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