LearningAlgorithm Class Reference

LearningAlgorithm object. More...

Inheritance diagram for LearningAlgorithm:

List of all members.

Public Member Functions

 LearningAlgorithm (NeuralNet *net)
 Constructor.
 LearningAlgorithm ()
 Constructor.
virtual ~LearningAlgorithm ()
 Destructor.
virtual double calculateMSE (const Pattern &)=0
 Calculate the Mean Square Error respect to Pattern passed.
virtual double calculateMSEOnSet (const PatternSet &set)
 Calculate the Mean Square Error respect to all Patterns passed.
double calculateRMSD (const Pattern &p)
 Calculate the Root Mean Square Deviation, i.e.
double calculateRMSDOnSet (const PatternSet &p)
 Calculate the Root Mean Square Deviation, i.e.
virtual void learn ()=0
 a single step of learning algorithm
virtual void learn (const Pattern &)=0
 Modify the object tring to learn the pattern passed.
virtual void learnOnSet (const PatternSet &set)
 Modify the object tring to learn all patterns present into PatternSet passed.
PatternSet loadPatternSet (ConfigurationParameters &params, QString path, QString prefix)
 Utility function for loading a PatternSet from a ConfigurationParameters.
NeuralNetneuralNet ()
 Return the NeuralNet setted.
void savePatternSet (PatternSet &set, ConfigurationParameters &params, QString prefix)
 Utility function for saving a PatternSet to a ConfigurationParameters.
void setNeuralNet (NeuralNet *net)
 Set the NeuralNet to learn.

Protected Member Functions

virtual void neuralNetChanged ()=0
 Implemented by subclasses for configuring internal structure when the NeuralNet has been setted.

Detailed Description

LearningAlgorithm object.

The LearningAlgorithm object is a the abstract class from which to implement learning algorithms

Definition at line 143 of file learningalgorithm.h.


Constructor & Destructor Documentation

Constructor.

Definition at line 128 of file learningalgorithm.cpp.

Constructor.

Definition at line 133 of file learningalgorithm.cpp.

~LearningAlgorithm ( ) [virtual]

Destructor.

Definition at line 138 of file learningalgorithm.cpp.


Member Function Documentation

virtual double calculateMSE ( const Pattern ) [pure virtual]

Calculate the Mean Square Error respect to Pattern passed.

Implemented in BackPropagationAlgo.

virtual double calculateMSEOnSet ( const PatternSet &  set) [inline, virtual]

Calculate the Mean Square Error respect to all Patterns passed.

Definition at line 173 of file learningalgorithm.h.

double calculateRMSD ( const Pattern p) [inline]

Calculate the Root Mean Square Deviation, i.e.

the square root of MSE

Definition at line 182 of file learningalgorithm.h.

double calculateRMSDOnSet ( const PatternSet &  p) [inline]

Calculate the Root Mean Square Deviation, i.e.

the square root of MSE

Definition at line 186 of file learningalgorithm.h.

virtual void learn ( const Pattern ) [pure virtual]

Modify the object tring to learn the pattern passed.

Implemented in BackPropagationAlgo.

virtual void learn ( ) [pure virtual]

a single step of learning algorithm

Implemented in BackPropagationAlgo.

virtual void learnOnSet ( const PatternSet &  set) [inline, virtual]

Modify the object tring to learn all patterns present into PatternSet passed.

Definition at line 165 of file learningalgorithm.h.

virtual void neuralNetChanged ( ) [protected, pure virtual]

Implemented by subclasses for configuring internal structure when the NeuralNet has been setted.

Implemented in BackPropagationAlgo.

void savePatternSet ( PatternSet &  set,
ConfigurationParameters params,
QString  prefix 
)

Utility function for saving a PatternSet to a ConfigurationParameters.

Definition at line 155 of file learningalgorithm.cpp.

References ConfigurationParameters::createGroup().

void setNeuralNet ( NeuralNet net) [inline]

Set the NeuralNet to learn.

Definition at line 152 of file learningalgorithm.h.

Referenced by BackPropagationAlgo::configure().


The documentation for this class was generated from the following files: